I would like to extract noun-adjective pair for Aspect Based Sentiment Analysis using Spacy's Dependency parser on my pandas dataframe. I was trying this code on Amazon fine food reviews dataset from Kaggle: Named Entity Recognition in aspect-opinion extraction using dependency rule matching
However, something seems to be wrong the way I feed my pandas dataframe to spacy. My results are not the way I would expect them to be. Could someone help me debug this please. Thanks a lot.
!python -m spacy download en_core_web_lg
import nltk
nltk.download('vader_lexicon')
import spacy
nlp = spacy.load("en_core_web_lg")
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()
def find_sentiment(doc):
# find roots of all entities in the text
for i in df['Text'].tolist():
doc = nlp(i)
ner_heads = {ent.root.idx: ent for ent in doc.ents}
rule3_pairs = []
for token in doc:
children = token.children
A = "999999"
M = "999999"
add_neg_pfx = False
for child in children:
if(child.dep_ == "nsubj" and not child.is_stop): # nsubj is nominal subject
if child.idx in ner_heads:
A = ner_heads[child.idx].text
else:
A = child.text
if(child.dep_ == "acomp" and not child.is_stop): # acomp is adjectival complement
M = child.text
# example - 'this could have been better' -> (this, not better)
if(child.dep_ == "aux" and child.tag_ == "MD"): # MD is modal auxiliary
neg_prefix = "not"
add_neg_pfx = True
if(child.dep_ == "neg"): # neg is negation
neg_prefix = child.text
add_neg_pfx = True
if (add_neg_pfx and M != "999999"):
M = neg_prefix + " " + M
if(A != "999999" and M != "999999"):
rule3_pairs.append((A, M, sid.polarity_scores(M)['compound']))
return rule3_pairs
df['three_tuples'] = df['Text'].apply(find_sentiment)
df.head()
My result is coming like this which clearly means something is wrong with my loop: