Can someone help me calculate the average daily steps for every location from the tibble below? This is the code I have so far. The final tibble should only contain the location and daily average steps.
group_by(location, date) %>%
summarise(daily_count = sum(count))
step_count_daily
> step_count_daily
# A tibble: 364 x 3
# Groups: location [4]
location date daily_count
<chr> <date> <dbl>
1 Austin 2019-01-15 5146
2 Austin 2019-01-16 9138
3 Austin 2019-01-17 4000
4 Austin 2019-01-18 2980.
5 Austin 2019-01-19 7287
6 Austin 2019-01-20 6567
7 Austin 2019-01-21 7538.
8 Austin 2019-01-22 15579
9 Austin 2019-01-23 15362
10 Austin 2019-01-24 6923
# … with 354 more rows
#This is the tibble
date_time date count location
<dttm> <date> <dbl> <chr>
1 2019-01-01 09:00:00 2019-01-01 764 Melbourne
2 2019-01-01 10:00:00 2019-01-01 913 Melbourne
3 2019-01-02 00:00:00 2019-01-02 9 Melbourne
4 2019-01-02 10:00:00 2019-01-02 2910 Melbourne
5 2019-01-02 11:00:00 2019-01-02 1390 Melbourne
6 2019-01-02 12:00:00 2019-01-02 1020 Melbourne
7 2019-01-02 13:00:00 2019-01-02 472 Melbourne
8 2019-01-02 15:00:00 2019-01-02 1220 Melbourne
9 2019-01-02 16:00:00 2019-01-02 1670 Melbourne
10 2019-01-02 17:00:00 2019-01-02 1390 Melbourne
#The output should look like this
#> # A tibble: 4 x 2
#> location avg_count
#> <chr> <dbl>
#> 1 Austin 7738.
#> 2 Denver 12738.
#> 3 Melbourne 7912.
#> 4 San Francisco 13990.