can anyone help me with that JSON format: (updated dataframe)
JSON:
{'PSG.MC': [{'date': 1547452800,'formatted_date': '2019-01-14', 'amount': 0.032025}, {'date': 1554361200, 'formatted_date': '2019-04-04', 'amount': 0.032025}, {'date': 1562310000, 'formatted_date': '2019-07-05', 'amount': 0.032025}, {'date': 1570690800, 'formatted_date': '2019-10-10', 'amount': 0.032025}, {'date': 1578902400, 'formatted_date': '2020-01-13', 'amount': 0.033}, {'date': 1588057200, 'formatted_date': '2020-04-28', 'amount': 0.033}, {'date': 1595228400, 'formatted_date': '2020-07-20', 'amount': 0.033}, {'date': 1601362800, 'formatted_date': '2020-09-29', 'amount': 0.033}, {'date': 1603436400, 'formatted_date': '2020-10-23', 'amount': 0.033}], 'ACX.MC': [{'date': 1559545200, 'formatted_date': '2019-06-03', 'amount': 0.3}, {'date': 1562137200, 'formatted_date': '2019-07-03', 'amount': 0.2}, {'date': 1591254000, 'formatted_date': '2020-06-04', 'amount': 0.4}, {'date': 1594018800, 'formatted_date': '2020-07-06', 'amount': 0.1}, {'date': 1606809600, 'formatted_date': '2020-12-01', 'amount': 0.1}]}
So I got it from
yahoo_financials.get_daily_dividend_data('2019-1-1', '2020-12-1')
As an example.
tried it to convert to DataFrame by:
data2 = {"data": {'VIG.VI': [{'date'......................................
s=pd.DataFrame(data2)
pd.concat([s.drop('data',1),pd.DataFrame(s.data.tolist(),index=s.index)],1)
In this case I get result like: 0 [{'date': 1433314500, 'formatted_date': '2015-... [{'date': 1430290500, 'formatted_date': '2015-...
Everything is perfect if weuse only 1 date + delete []:
Also I tried the code which under this topic: It works fine if format is the same for every variable in [], however if it is as in example above, then I get a mistake "arrays must all be same length"
Does anyone have any idea how could I convert this type of JSON to DataFrame?