The following code works as expected:
matrix.cpp
// [[Rcpp::depends(RcppEigen)]]
#include <RcppEigen.h>
// [[Rcpp::export]]
SEXP eigenMatTrans(Eigen::MatrixXd A){
Eigen::MatrixXd C = A.transpose();
return Rcpp::wrap(C);
}
// [[Rcpp::export]]
SEXP eigenMatMult(Eigen::MatrixXd A, Eigen::MatrixXd B){
Eigen::MatrixXd C = A * B;
return Rcpp::wrap(C);
}
// [[Rcpp::export]]
SEXP eigenMapMatMult(const Eigen::Map<Eigen::MatrixXd> A, Eigen::Map<Eigen::MatrixXd> B){
Eigen::MatrixXd C = A * B;
return Rcpp::wrap(C);
}
This is using the C++ eigen class for matrices, See https://eigen.tuxfamily.org/dox
In R, I can access those functions.
library(Rcpp);
Rcpp::sourceCpp('matrix.cpp');
A <- matrix(rnorm(10000), 100, 100);
B <- matrix(rnorm(10000), 100, 100);
library(microbenchmark);
microbenchmark(eigenMatTrans(A), t(A), A%*%B, eigenMatMult(A, B), eigenMapMatMult(A, B))
This shows that R performs pretty well on resorting (transpose). Multiplying has some advantages with eigen.
Using the Matrix library, I can convert a normal matrix to a sparse matrix.
Example from https://cmdlinetips.com/2019/05/introduction-to-sparse-matrices-in-r/
library(Matrix);
data<- rnorm(1e6)
zero_index <- sample(1e6)[1:9e5]
data[zero_index] <- 0
A = matrix(data, ncol=1000)
A.csr = as(A, "dgRMatrix");
B.csr = t(A.csr);
A.csc = as(A, "dgCMatrix");
B.csc = t(A.csc);
So if I wanted to multiply A.csr times B.csr using eigen, how to do that in C++? I do not want to have to convert types if I don't have to. It is a memory size thing.
The A.csr %*% B.csr
is not-yet-implemented.
The A.csc %*% B.csc
is working.
I would like to microbenchmark the different options, and see how matrix size will be most efficient. In the end, I will have a matrix that is about 1% sparse and have 5 million rows and cols ...