-1

I have this dataframe:

              DP1           DP2           DP3           DP4           DP5           DP6           DP7           DP8           DP9          DP10          DP11          DP12
OP1     2197389.0  8.334035e+06  1.416121e+07  2.112566e+07  2.353240e+07  2.521456e+07  2.626701e+07  2.815038e+07           NaN  2.894672e+07           NaN           NaN
OP2     8859402.0  3.405393e+07  5.225385e+07  6.641002e+07  7.142158e+07  7.567666e+07  7.919994e+07  8.301265e+07  8.549990e+07  8.619976e+07  8.682675e+07  8.732952e+07
OP3    14787376.0  5.051932e+07  7.526720e+07  1.109929e+08  1.197162e+08  1.261469e+08  1.338973e+08  1.354751e+08  1.388290e+08  1.414128e+08  1.422856e+08           NaN
OP4    21493250.0  6.590146e+07  1.171731e+08  1.638118e+08  1.782883e+08  1.900619e+08  1.986440e+08  2.007501e+08  2.012454e+08  2.049792e+08  2.092219e+08  2.098224e+08
OP5    21700836.0  7.355879e+07  1.157970e+08  1.607273e+08  1.744825e+08  1.836202e+08  1.976620e+08  2.020817e+08  2.048174e+08  2.067469e+08  2.104735e+08  2.123310e+08
OP6    27197016.0  8.379447e+07  1.368874e+08  1.799347e+08  1.973877e+08  2.126034e+08  2.240213e+08  2.267334e+08  2.280336e+08  2.326177e+08  2.366704e+08  2.387043e+08
OP7    28312408.0  7.638481e+07  1.235895e+08  1.656576e+08  1.802400e+08  1.934127e+08  2.064300e+08  2.095814e+08  2.135559e+08  2.163695e+08  2.182680e+08  2.204437e+08
OP8    21161654.0  7.164625e+07  1.173728e+08  1.507630e+08  1.614412e+08  1.762703e+08  1.874506e+08  1.915259e+08  1.943434e+08  1.981648e+08  2.007807e+08  2.011242e+08
OP9    22030953.0  7.391936e+07  1.188640e+08  1.502157e+08  1.577981e+08  1.702076e+08  1.790455e+08  1.829043e+08  1.843653e+08  1.877471e+08  1.897388e+08  1.912022e+08
OP10   19800999.0  5.958667e+07  1.000103e+08  1.350046e+08  1.467698e+08  1.602286e+08  1.708699e+08  1.731278e+08  1.743493e+08  1.787757e+08  1.806712e+08           NaN
OP11   26744235.0  7.160570e+07  1.086724e+08  1.423295e+08  1.527055e+08  1.640139e+08  1.719841e+08  1.747707e+08  1.763537e+08  1.861115e+08           NaN           NaN
OP12   14967698.0  4.827327e+07  8.318845e+07  1.093670e+08  1.209002e+08  1.287389e+08  1.429479e+08  1.450573e+08  1.530010e+08           NaN           NaN           NaN
OP13   15860127.0  5.116424e+07  8.653871e+07  1.143786e+08  1.280226e+08  1.368423e+08  1.446488e+08  1.532531e+08           NaN           NaN           NaN           NaN
OP14   16421831.0  4.605250e+07  7.286290e+07  9.995756e+07  1.093182e+08  1.195463e+08  1.367919e+08           NaN           NaN           NaN           NaN           NaN
OP15   15452224.0  4.796981e+07  7.958047e+07  1.084661e+08  1.166676e+08  1.431275e+08           NaN           NaN           NaN           NaN           NaN           NaN
OP16   12994042.0  4.893026e+07  7.764653e+07  1.025860e+08  1.350187e+08           NaN           NaN           NaN           NaN           NaN           NaN           NaN
OP17   14602038.0  4.720123e+07  7.812935e+07  1.341007e+08           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN
OP18   17740235.0  5.648562e+07  1.517327e+08           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN
OP19   23064250.0  1.879731e+08           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN
OP20  221345563.0           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN           NaN
OP21  566733526.0  1.424700e+09  2.119047e+09  2.676880e+09  2.868863e+09  3.035883e+09  3.173159e+09  3.216514e+09  3.245888e+09  3.284416e+09  3.306339e+09  3.315317e+09 

Above dataframe is created using cumsum(). Here the result is in the form of Float. values are correct but it is in Floating format.

I need like below:

          DP1          DP2          DP3          DP4          DP5  
 OP1     2197389.0    8334035.0   14161207.0   21125657.0   23532404.0   ...
 OP2     8859402.0   34053933.0   52253851.0   66410020.0   71421580.0   ...
 OP3    14787376.0   50519318.0   75267203.0  110992853.0  119716151.0   ...
 OP4    21493250.0   65901456.0  117173071.0  163811817.0  178288346.0   ...
 OP5    21700836.0   73558786.0  115797026.0  160727304.0  174482464.0   ...
 ...
 ...

For example 8.334035 value will change to 8334035. D1 is in right form but other columns is not.

Devil
  • 83
  • 8
  • Does this answer your question? [how to get rid of pandas converting large numbers in excel sheet to exponential?](https://stackoverflow.com/questions/38689125/how-to-get-rid-of-pandas-converting-large-numbers-in-excel-sheet-to-exponential) It does not look like you are actually asking for integer representation, you are asking how to change from scientific notation to float. – AlexK Apr 27 '21 at 06:13
  • What is reason for it? `8.334035e+06` is same like `8334035.0` – jezrael May 13 '21 at 05:24
  • No, I want to convert 8.330435 value to 8330435.0 (float to long int) – Devil May 13 '21 at 05:39

1 Answers1

0

To convert it to int use ->

df = df.astype('Int64')
Nk03
  • 14,699
  • 2
  • 8
  • 22