I have multiple dataframes, on which I want to run this function which mainly drops unnecessary columns from the dataframe and returns a dataframe:
def dropunnamednancols(df):
"""
Drop any columns staring with unnamed and NaN
Args:
df ([dataframe]): dataframe of which columns to be dropped
"""
#first drop nan columns
df = df.loc[:, df.columns.notnull()]
#then search for columns with unnamed
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
return df
Now I iterate over the list of dataframes: [df1, df2, df3]
dfsublist = [df1, df2, df3]
for index in enumerate(dfsublist):
dfsublist[index] = dropunnamednancols(dfsublist[index])
Whereas the items of dfsublist have been changed, the original dataframes df1, df2, df3 still retain the unnecessary columns. How could I achieve this?