Option 1: Getter and Setter Methods
In other object-oriented programming languages, the behavior you desire, adding additional logic when accessing the value of an instance variable, is typically implemented by "getter" and "setter" methods on all instance variables in the object:
class LineSegment:
def __init__(
self,
origin,
termination,
):
self._origin = origin
self._termination = termination
# getter method for origin
def get_origin(self):
return self._origin
# setter method for origin
def set_origin(self,new_origin):
self._origin = new_origin
# getter method for termination
def get_termination(self):
return self._termination
# setter method for termination
def set_termination(self,new_termination):
self._termination = new_termination
def get_length(self):
return math.sqrt(
(self.get_origin().x - self.get_termination().x) ** 2
+ (self.get_origin().y - self.get_termination().y) ** 2
) #Calls the getters here, rather than the instance vars in case
# getter logic is added in the future
So that the extra length calculation is performed every time you get()
the length
variable, and instead of this_line_segment.origin.x = 1
, you do:
new_origin = this_line_segment.get_origin()
new_origin.x = 1
this_line_segment.set_origin(new_origin)
print(this_line_segment.get_length())
(Note that I use _
in front of variables to denote that they are private and should only be accessed via getters and setters. For example, the variable length
should never be set by the user--only through the LineSegment class.)
However, explicit getters and setters are clearly a clunky way to manage variables in Python, where the lenient access protections make accessing them directly more transparent.
Option 2: The @property decorator
A more Pythonic way to add getting and setting logic is the @property decorator, as @progmatico points out in their comment, which calls decorated getter and setter methods when an instance variable is accessed. Since all we need to do is calculate the length whenever it is needed, we can leave the other instance variables public for now:
class LineSegment:
def __init__(
self,
origin,
termination,
):
self.origin = origin
self.termination = termination
# getter method for length
@property
def length(self):
return math.sqrt(
(self.origin.x - self.termination.x) ** 2
+ (self.origin.y - self.termination.y) ** 2
)
And usage:
this_line_segment = LineSegment(origin=Point(x=0,y=0),
termination=Point(x=1,y=1))
print(this_line_segment.length) # Prints 1.4142135623730951
this_line_segment.origin.x = 1
print(this_line_segment.length) # Prints 1.0
Tested in Python 3.7.7.
Note: We must do the length calculation in the length
getter and not upon initialization of the LineSegment
. We can't do the length calculation in the setter methods for the origin and termination instance variables and thus also in the initialization because the Point
object is mutable, and mutating it does not call LineSegment
's setter method. Although we could do this in Option 1, it would lead to an antipattern, in which we would have to recalculate every other instance variable in the setter for each instance variable of an object in the cases for which the instance variables depend on one another.