... approx 10 million records, with 23 columns per record ... The reason I prefer a list and not a slice is due to the large amount of contiguous memory an array/slice would need.
This contiguous memory is its own benefit as well as its own drawback. Let's consider both parts.
(Note that it is also possible to use a hybrid approach: a list of chunks. This seems unlikely to be very worthwhile here though.)
Also, since I don't know the size of the exact number of records in the file upfront, I can't specify the array size upfront (I know Go can dynamically re-dimension the slice/array as needed, but this seems terribly inefficient for such a large set of data).
Clearly, if there are n records, and you allocate and fill in each one once (using a list), this is O(n).
If you use a slice, and allocate a single extra slice entry every time, you start with none, grow it to size 1, then copy the 1 to a new array of size 2 and fill in item #2, grow it to size 3 and fill in item #3, and so on. The first of the n entities is copied n times, the second is copied n-1 times, and so on, for n(n+1)/2 = O(n2) copies. But if you use a multiplicative expansion technique—which Go's append
implementation does—this drops to O(log n) copies. Each one does copy more bytes though. It ends up being O(n), amortized (see Why do dynamic arrays have to geometrically increase their capacity to gain O(1) amortized push_back time complexity?).
The space used with the slice is obviously O(n). The space used for the linked list approach is O(n) as well (though the records now require at least one forward pointer so you need some extra space per record).
So in terms of the time needed to construct the data, and the space needed to hold the data, it's O(n) either way. You end up with the same total memory requirement. The main difference, at first glace anyway, is that the linked-list approach doesn't require contiguous memory.
So: What do we lose when using contiguous memory, and what do we gain?
What we lose
The thing we lose is obvious. If we already have fragmented memory regions, we might not be able to get a contiguous block of the right size. That is, given:
used: 1 MB (starting at base, ending at base+1M)
free: 1 MB (starting at +1M, ending at +2M)
used: 1 MB (etc)
free: 1 MB
used: 1 MB
free: 1 MB
we have a total of 6 MB, 3 used and 3 free. We can allocate 3 1 MB blocks, but we can't allocate one 3 MB block unless we can somehow compact the three "used" regions.
Since Go programs tend to run in virtual memory on large-memory-space machines (virtual sizes of 64 GB or more), this tends not to be a big problem. Of course everyone's situation differs, so if you really are VM-constrained, that's a real concern. (Other languages have compacting GC to deal with this, and a future Go implementation could at least in theory use a compacting GC.)
What we gain
The first gain is also obvious: we don't need pointers in each record. This saves some space—the exact amount depends on the size of the pointers, whether we're using singly linked lists, and so on. Let's just assume 2 8 byte pointers, or 16 bytes per record. Multiply by 10 million records and we're looking pretty good here: we've saved 160 MBytes. (Go's container/list
implementation uses a doubly linked list, and on a 64 bit machine, this is the size of the per-element threading needed.)
We gain something less obvious at first, though, and it's huge. Because Go is a garbage-collected language, every pointer is something the GC must examine at various times. The slice approach has zero extra pointers per record; the linked-list approach has two. That means that the GC system can avoid examining the nonexistent 20 million pointers (in the 10 million records).
Conclusion
There are times to use container/list
. If your algorithm really calls for a list and is significantly clearer that way, do it that way, unless and until it proves to be a problem in practice. Or, if you have items that can be on some collection of lists—items that are actually shared, but some of them are on the X list and some are on the Y list and some are on both—this calls for a list-style container. But if there's an easy way to express something as either a list or a slice, go for the slice version first. Because slices are built into Go, you also get the type safety / clarity mentioned in the first link (Why are lists used infrequently in Go?).