xss=StandardScaler()
yss=StandardScaler()
dataset=pd.read_csv('primes.csv')
x_train=dataset["x"]
x_train=x_train[0:5400]
y_train=dataset["y"]
y_train=y_train[0:5400]
x_test=dataset["x"]
x_test=x_test[5400:]
y_test=dataset["y"]
y_test=y_test[5400:]
x_train=[x_train]
y_train=[y_train]
x_train=xss.fit_transform(x_train)
y_train=yss.fit_transform(y_train)
x_train = np.asarray(x_train).astype('float32')
y_train = np.asarray(y_train).astype('float32')
model=Sequential()
model.add(Dense(1024,activation="relu"))
model.add(Dropout(0.01))
model.add(Dense(128,activation="relu"))
model.add(Dropout(0.01))
model.add(Dense(24,activation="relu"))
model.add(Dense(1,activation="linear"))
optimizer=tf.keras.optimizers.Adam(1.5e-2,0.5)
model.compile(optimizer = optimizer, loss = 'mse', metrics = ['mean_absolute_error'])
model.fit(x_train,y_train,epochs=10,batch_size=128)
I want my output to be between 0 to 100000 but it only outputs 0 at loss and metric after so many iterations.
Epoch 1/10 1/1 [==============================] - 1s 582ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 2/10 1/1 [==============================] - 0s 30ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 3/10 1/1 [==============================] - 0s 25ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 4/10 1/1 [==============================] - 0s 28ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 5/10 1/1 [==============================] - 0s 26ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 6/10 1/1 [==============================] - 0s 26ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 7/10 1/1 [==============================] - 0s 28ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 8/10 1/1 [==============================] - 0s 27ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 9/10 1/1 [==============================] - 0s 28ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00 Epoch 10/10 1/1 [==============================] - 0s 27ms/step - loss: 0.0000e+00 - mean_absolute_error: 0.0000e+00