I saw the following in a guide to text classification:
hidden_layer = layers.Dense(100, activation="relu")(input_layer)
What does the (input_layer)
mean?
The context is:
def create_model_architecture(input_size):
# create input layer
input_layer = layers.Input((input_size, ), sparse=True)
# create hidden layer
hidden_layer = layers.Dense(100, activation="relu")(input_layer)
# create output layer
output_layer = layers.Dense(1, activation="sigmoid")(hidden_layer)
classifier = models.Model(inputs = input_layer, outputs = output_layer)
classifier.compile(optimizer=optimizers.Adam(), loss='binary_crossentropy')
return classifier
Also - is this a sequential model?