So I'm not that well versed in linear algebra so I'm struggling with this.
I have a unit vectors v
. I want to find two angles(angle 1, rotation around x-axis, and angle 2, rotation around z-axis) such that when I rotate v
by them it aligns the vector v
with the y-axis. From this question I have a function that can find the angle between arbitrary vectors and returns a rotation. But this function returns 3 angles. Essentially there is an infinite number of 3d rotation that aligns v
with the y-axis so I want the two unique angles.
This the code I have now, it requires numpy and scipy:
import numpy as np
import random
from scipy.spatial.transform import Rotation as R
def rotation_from_unit_vectors(a, b):
v = np.cross(a, b)
c = np.dot(a, b)
s = np.linalg.norm(v)
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2))
return R.from_matrix(rotation_matrix)
y_axis = np.asarray([0.0, 1.0, 0.0])
alpha = random.uniform(0, 10)
beta = random.uniform(0, 10)
gamma = random.uniform(0, 10)
v = np.asarray([alpha, beta, gamma])
v = v / np.linalg.norm(v)
r = rotation_from_unit_vectors(v, y_axis)
print(r.as_euler('xyz', degrees = True))
print(r.apply(v))