I am trying to implement an xgboost model in scala, using zeppelin in dataproc (google cloud). This is the code I'm implementing:
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions._
import org.apache.spark.sql.{DataFrame, Dataset, Row, SaveMode, SparkSession}
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.udf
import scala.collection.mutable
import org.apache.spark.sql.{DataFrame, _}
import spark.implicits._
import org.apache.spark.ml.{Pipeline, PipelineStage}
Adding deppendency (also added jar in zeppelin notebook dependencies)
<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark</artifactId>
<version>0.72</version>
</dependency>
Dummy data:
val someData = Seq(
Row(8, 15 1),
Row(64, 25 1),
Row(27, 22 0)
)
val someSchema = List(
StructField("var1", IntegerType, true),
StructField("var2", IntegerType, true),
StructField("Classification", IntegerType, true)
)
val data= spark.createDataFrame(
spark.sparkContext.parallelize(someData),
StructType(someSchema)
)
Model implementation:
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.feature.VectorAssembler
val stringIndexer = new StringIndexer().
setInputCol("Classification").
setOutputCol("label").
fit(data)
val labelTransformed = stringIndexer.transform(data).drop("Classification")
val vectorAssembler = new VectorAssembler().
setInputCols(Array("var1", "var2")).
setOutputCol("features")
val xgbInput = vectorAssembler.transform(labelTransformed).select("features", "label")
import ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator
val paramMap = Map[String, Any]("objective" -> "binary:logistic", "nworkers" -> 2)
val est = new XGBoostEstimator(paramMap)
val model = est.fit(xgbInput)
Everything works except for the very last line, where I get the following error:
Tracker started, with env={DMLC_NUM_SERVER=0, DMLC_TRACKER_URI=10.156.0.33, DMLC_TRACKER_PORT=9091, DMLC_NUM_WORKER=2}
ml.dmlc.xgboost4j.java.XGBoostError: XGBoostModel training failed
at ml.dmlc.xgboost4j.scala.spark.XGBoost$.ml$dmlc$xgboost4j$scala$spark$XGBoost$$postTrackerReturnProcessing(XGBoost.scala:406)
at ml.dmlc.xgboost4j.scala.spark.XGBoost$$anonfun$trainDistributed$4.apply(XGBoost.scala:356)
at ml.dmlc.xgboost4j.scala.spark.XGBoost$$anonfun$trainDistributed$4.apply(XGBoost.scala:337)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at ml.dmlc.xgboost4j.scala.spark.XGBoost$.trainDistributed(XGBoost.scala:336)
at ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator.train(XGBoostEstimator.scala:139)
at ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator.train(XGBoostEstimator.scala:36)
at org.apache.spark.ml.Predictor.fit(Predictor.scala:118)
... 69 elided
Once again, using scala on zeppelin through dataproc, spark version is 2.4.5.
Can anyone help me?
EDIT: Full error logs:
Tracker started, with env={DMLC_NUM_SERVER=0, DMLC_TRACKER_URI=10.156.0.9, DMLC_TRACKER_PORT=9091, DMLC_NUM_WORKER=2}
ml.dmlc.xgboost4j.java.XGBoostError: XGBoostModel training failed
at ml.dmlc.xgboost4j.scala.spark.XGBoost$.ml$dmlc$xgboost4j$scala$spark$XGBoost$$postTrackerReturnProcessing(XGBoost.scala:406)
at ml.dmlc.xgboost4j.scala.spark.XGBoost$$anonfun$trainDistributed$4.apply(XGBoost.scala:356)
at ml.dmlc.xgboost4j.scala.spark.XGBoost$$anonfun$trainDistributed$4.apply(XGBoost.scala:337)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at ml.dmlc.xgboost4j.scala.spark.XGBoost$.trainDistributed(XGBoost.scala:336)
at ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator.train(XGBoostEstimator.scala:139)
at ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator.train(XGBoostEstimator.scala:36)
at org.apache.spark.ml.Predictor.fit(Predictor.scala:118)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.liftedTree1$1(<console>:63)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:61)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:74)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:76)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:78)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:80)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:82)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:84)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:86)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:88)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:90)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:92)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:94)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:96)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw$$iw.<init>(<console>:98)
at $line15134072657.$read$$iw$$iw$$iw$$iw$$iw.<init>(<console>:100)
at $line15134072657.$read$$iw$$iw$$iw$$iw.<init>(<console>:102)
at $line15134072657.$read$$iw$$iw$$iw.<init>(<console>:104)
at $line15134072657.$read$$iw$$iw.<init>(<console>:106)
at $line15134072657.$read$$iw.<init>(<console>:108)
at $line15134072657.$read.<init>(<console>:110)
at $line15134072657.$read$.<init>(<console>:114)
at $line15134072657.$read$.<clinit>(<console>)
at $line15134072657.$eval$.$print$lzycompute(<console>:7)
at $line15134072657.$eval$.$print(<console>:6)
at $line15134072657.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at org.apache.zeppelin.spark.SparkScala211Interpreter.scalaInterpret(SparkScala211Interpreter.scala:108)
at org.apache.zeppelin.spark.BaseSparkScalaInterpreter$$anonfun$_interpret$1$1.apply(BaseSparkScalaInterpreter.scala:100)
at org.apache.zeppelin.spark.BaseSparkScalaInterpreter$$anonfun$_interpret$1$1.apply(BaseSparkScalaInterpreter.scala:94)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at scala.Console$.withOut(Console.scala:65)
at org.apache.zeppelin.spark.BaseSparkScalaInterpreter._interpret$1(BaseSparkScalaInterpreter.scala:94)
at org.apache.zeppelin.spark.BaseSparkScalaInterpreter.interpret(BaseSparkScalaInterpreter.scala:125)
at org.apache.zeppelin.spark.NewSparkInterpreter.interpret(NewSparkInterpreter.java:147)
at org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:73)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:103)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:632)
at org.apache.zeppelin.scheduler.Job.run(Job.java:188)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:140)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
ml.dmlc.xgboost4j.java.XGBoostError: XGBoostModel training failed