I have a big pandas dataframe (about 150000 rows). I have tried method groupby('id') but in returns group tuples. I need just a list of dataframes, and then I convert them into np array batches to put into an autoencoder (like this https://www.datacamp.com/community/tutorials/autoencoder-keras-tutorial but 1D)
So I have a pandas dataset :
data = {'Name': ['Tom', 'Joseph', 'Krish', 'John', 'John', 'John', 'John', 'Krish'], 'Age': [20, 21, 19, 18, 18, 18, 18, 18],'id': [1, 1, 2, 2, 3, 3, 3, 3]}
# Create DataFrame
df = pd.DataFrame(data)
# Print the output.
df.head(10)
I need the same output (just a list of pandas dataframe). Also, i need a list of unsorted lists, it is important, because its time series.
data1 = {'Name': ['Tom', 'Joseph'], 'Age': [20, 21],'id': [1, 1]}
data2 = {'Name': ['Krish', 'John', ], 'Age': [19, 18, ],'id': [2, 2]}
data3 = {'Name': ['John', 'John', 'John', 'Krish'], 'Age': [18, 18, 18, 18],'id': [3, 3, 3, 3]}
pd_1 = pd.DataFrame(data1)
pd_2 = pd.DataFrame(data2)
pd_3 = pd.DataFrame(data3)
array_list = [pd_1,pd_2,pd_3]
array_list
How can I split dataframe ?