I am using
from sklearn import preprocessing
v01 = preprocessing.minmax_scale(v01, feature_range=(rf_imp_vec_truncated.min(), rf_imp_vec_truncated.max()))
and it usually works, except for some times when I get errors like
preprocessing.minmax_scale(v01, feature_range=(rf_imp_vec_truncated.min(), rf_imp_vec_truncated.max()))
File "C:\Code\EPMD\Kodex\EPD_Prerequisite\python_3.7.6\Lib\site-packages\sklearn\preprocessing\_data.py", line 510, in minmax_scale
X = s.fit_transform(X)
File "C:\Code\EPMD\Kodex\EPD_Prerequisite\python_3.7.6\Lib\site-packages\sklearn\base.py", line 571, in fit_transform
return self.fit(X, **fit_params).transform(X)
File "C:\Code\EPMD\Kodex\EPD_Prerequisite\python_3.7.6\Lib\site-packages\sklearn\preprocessing\_data.py", line 339, in fit
return self.partial_fit(X, y)
File "C:\Code\EPMD\Kodex\EPD_Prerequisite\python_3.7.6\Lib\site-packages\sklearn\preprocessing\_data.py", line 365, in partial_fit
" than maximum. Got %s." % str(feature_range))
ValueError: Minimum of desired feature range must be smaller than maximum. Got (-6.090366306515144e-15, -6.090366306515144e-15).
This looks like a numeric error, and I would like to see a flat line in this case.
How to get around this without too much code uglification?