I am using the Notebook feature from the Azure Machine Learning Service. In this notebook I connected to the workspace, retrieved the corresponding datastore and retrieved my files as a file-dataset object. So far everything works.
from azureml.core import Workspace, Datastore, Dataset
import pandas as pd
import os
workspace = Workspace.from_config()
container="cnt_name"
file_path = 'actual_path'
# get datstore and dataset
datastore = Datastore.get(workspace, container)
datastore_path = [(datastore, file_path )]
dataset = Dataset.File.from_files(datastore_path)
Now I try to mount this file_dataset
mounted_path = "/tmp/test_dir4"
dataset_mounted = dataset.mount(mounted_path)
and everything seems fine. A quick ls gives the following output:
ls -ltr /tmp/
prwx------ 1 azureuser azureuser 0 May 12 13:29 clr-debug-pipe-14801-259046-out
prwx------ 1 azureuser azureuser 0 May 12 13:29 clr-debug-pipe-14801-259046-in
d--------- 0 root root 0 May 12 13:29 test_dir4
drwx------ 3 azureuser azureuser 4096 May 12 13:29 tmpjrb2tx8g
-rw------- 1 azureuser azureuser 364 May 12 13:29 tmp5w_ikt6j
drwx------ 2 azureuser azureuser 4096 May 12 13:29 pyright-14886-W3YT3PTdzoIO
But here is my problem: The mounted folder is mounted by the root user. I cannot access it - neither from the notebook nor from the shell. ls yields the typical errors path not found
or permission denied
.