If you compare strings >that< way, there is probably no performance difference.
However, that is the WRONG WAY to compare strings. The correct way is to use the equals(Object)
method. For example.
if (s.Str.equals("Upgrade")) {
Read this:
I apply the following code to my selection objects every 17 milliseconds.
The time that it will take to test two strings for equality is probably in the order of tens of NANOseconds. So ... basically ... the difference between comparing strings or integers is irrelevant.
This illustrates why premature optimization is a bad thing. You should only optimize code when you know that it is going to be worthwhile to spend your time on it; i.e. when you know there is going to be a pay-off.
So should I optimize after I write and finish all the code? Does 'not doing premature optimization' means that?
No it doesn't exactly mean that. (Well .. not to me anyway.) What it means to me is that you shouldn't optimize until:
- you have a working program whose performance you can measure,
- you have determined specific (quantifiable) performance criteria,
- you have a means of measuring the performance; e.g. an appropriate benchmarks involving real or realistic use-cases, and
- you have good a means of identifying the actual performance hotspots.
If you try to optimize before you have the above, you are likely to optimize the wrong parts of the code for the wrong reasons, and your effort (programmer time) is likely to be spent inefficiently.
In your specific case, my gut feeling is that if you followed the recommended process you would discover1 that this String
vs int
(vs enum
) is irrelevant to your game's observable performance2.
But if you want to be more scientific than "gut feeling", you should wait until you have 1 through 4 settled, and then measure to see if the actual performance meets your criteria. Only then should you decide whether or not to optimize.
1 - My prediction assumes that your characterization of the problem is close enough to reality. That is always a risk when people try to identify performance issues "by eye" rather than by measuring.
2 - It is relevant to other things; e.g. code readability and maintainability, but I'm not going to address those in this Answer.