You can try np.select()
. I believe it depends on the number of unique elements to replace.
def replace_values(df, d_mapping):
def replace_col(col):
# extract numpy array and column name from pd.Series
col, name = col.values, col.name
# generate condlist and choicelist
# for every key in mapping create a boolean mask
condlist = [col == x for x in d_mapping[name].keys()]
choicelist = d_mapping[name].values()
# use np.where to keep the existing value which won't be replaced
return np.select(condlist, choicelist, col)
return df.apply(replace_col)
usage:
replace_values(df, d_mapping)
I also believe that you you can speed up the code above if you use lists/arrays in the mapping instead of dicts and replace keys()
, and values()
calls with index lookups:
d_mapping = {"col1": [[1, 2], [2, 1]], "col2": [[4], [1]]}
...
lookups and are also expensive
m = d_mapping[name]
condlist = [col == x for x in m[0]]
choicelist = m[1]
...
np.isin(col, m[0]),
Upd:
Here is the benchmark
import pandas as pd
import numpy as np
# Dataframe
df = pd.DataFrame({"col1": [1, 2, 3], "col2": [4, 5, 6]})
# dictionary I want to map
d_mapping = {"col1": [[1, 2], [2, 1]], "col2": [[4], [1]]}
d_mapping_2 = {
col: dict(zip(*replacement)) for col, replacement in d_mapping.items()
}
def replace_values(df, mapping):
def replace_col(col):
col, (m0, m1) = col.values, mapping[col.name]
return np.select([col == x for x in m0], m1, col)
return df.apply(replace_col)
from timeit import timeit
print("np.select: ", timeit(lambda: replace_values(df, d_mapping), number=5000))
print("df.replace: ", timeit(lambda: df.replace(d_mapping_2), number=5000))
On my 6-year old laptop it prints:
np.select: 3.6562702230003197
df.replace: 4.714512745998945
np.select is ~20% faster