so I'm using python for some basic stuff, and I was following a tutorial on handwritten digits. But whenever I do:
model.fit(x_train, y_train, epochs=3)
it always crashes....
This is my piece of code that from the tutorial
import tensorflow as tf
mnist= tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test)= mnist.load_data()
x_train= tf.keras.utils.normalize(x_train, axis=1)
x_test= tf.keras.utils.normalize(x_test, axis=1)
model= tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation= tf.nn.relu))
model.add(tf.keras.layers.Dense(128, activation= tf.nn.relu))
model.add(tf.keras.layers.Dense(10, activation= tf.nn.softmax))
#always trying to minimize "loss"
model.compile(optimizer= 'adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3)
and this is the error that I get:
Epoch 1/3
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-22-67c2d7c319b1> in <module>
19 loss='categorical_crossentropy',
20 metrics=['accuracy'])
---> 21 model.fit(x_train, y_train, epochs=3)
~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1181 _r=1):
1182 callbacks.on_train_batch_begin(step)
-> 1183 tmp_logs = self.train_function(iterator)
1184 if data_handler.should_sync:
1185 context.async_wait()
~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
887
888 with OptionalXlaContext(self._jit_compile):
--> 889 result = self._call(*args, **kwds)
890
891 new_tracing_count = self.experimental_get_tracing_count()
~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
931 # This is the first call of __call__, so we have to initialize.
932 initializers = []
--> 933 self._initialize(args, kwds, add_initializers_to=initializers)
934 finally:
935 # At this point we know that the initialization is complete (or less
~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
761 self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph)
762 self._concrete_stateful_fn = (
--> 763 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
764 *args, **kwds))
765
~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
3048 args, kwargs = None, None
3049 with self._lock:
-> 3050 graph_function, _ = self._maybe_define_function(args, kwargs)
3051 return graph_function
3052
~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)
3442
3443 self._function_cache.missed.add(call_context_key)
-> 3444 graph_function = self._create_graph_function(args, kwargs)
3445 self._function_cache.primary[cache_key] = graph_function
3446
~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3277 arg_names = base_arg_names + missing_arg_names
3278 graph_function = ConcreteFunction(
-> 3279 func_graph_module.func_graph_from_py_func(
3280 self._name,
3281 self._python_function,
~\anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
997 _, original_func = tf_decorator.unwrap(python_func)
998
--> 999 func_outputs = python_func(*func_args, **func_kwargs)
1000
1001 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
670 # the function a weak reference to itself to avoid a reference cycle.
671 with OptionalXlaContext(compile_with_xla):
--> 672 out = weak_wrapped_fn().__wrapped__(*args, **kwds)
673 return out
674
~\anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
984 except Exception as e: # pylint:disable=broad-except
985 if hasattr(e, "ag_error_metadata"):
--> 986 raise e.ag_error_metadata.to_exception(e)
987 else:
988 raise
ValueError: in user code:
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:855 train_function *
return step_function(self, iterator)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:845 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1285 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2833 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:3608 _call_for_each_replica
return fn(*args, **kwargs)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:838 run_step **
outputs = model.train_step(data)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:796 train_step
loss = self.compiled_loss(
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\engine\compile_utils.py:204 __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\losses.py:155 __call__
losses = call_fn(y_true, y_pred)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\losses.py:259 call **
return ag_fn(y_true, y_pred, **self._fn_kwargs)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\util\dispatch.py:206 wrapper
return target(*args, **kwargs)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\losses.py:1643 categorical_crossentropy
return backend.categorical_crossentropy(
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\util\dispatch.py:206 wrapper
return target(*args, **kwargs)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\keras\backend.py:4862 categorical_crossentropy
target.shape.assert_is_compatible_with(output.shape)
C:\Users\binju\anaconda3\lib\site-packages\tensorflow\python\framework\tensor_shape.py:1161 assert_is_compatible_with
raise ValueError("Shapes %s and %s are incompatible" % (self, other))
ValueError: Shapes (32, 1) and (32, 10) are incompatible
I've tried other tutorials too, but whenever I reach the model.fit part with epochs, it always seems to crash a lot? Any help would be appreciated :)