I need to find peaks in a time series data, but the result needs to be equal to the result of the findpeaks function in MATLAB, with the argument 'MinPeakWidth" set to 10. I have already tried a lot of functions in order to achieve this: pracma::findpeaks, fluoR::find_peaks, splus2R::peaks, IDPmisc::peaks (this one has one argument regarding peak width, but the result is not the same). I have already looked in other functions as well, including packages for chromatography and spectoscropy analysis in bioconductor. Beyond that, I have tried the functions (and little alterations) from this other question in stackoverflow: Finding local maxima and minima
The findpeaks function in MATLAB is used for finding local maximas and has the following charcateristics:
Find the local maxima. The peaks are output in order of occurrence. The first sample is not included despite being the maximum. For the flat peak, the function returns only the point with lowest index.
The explanation for the "MinPeakWidth' argument in MATLAB web site is
Minimum peak width, specified as the comma-separated pair consisting of 'MinPeakWidth' and a positive real scalar. Use this argument to select only those peaks that have widths of at least 'MinPeakWidth'. If you specify a location vector, x, then 'MinPeakWidth' must be expressed in terms of x. If x is a datetime array, then specify 'MinPeakWidth' as a duration scalar or as a numeric scalar expressed in days. If you specify a sample rate, Fs, then 'MinPeakWidth' must be expressed in units of time. If you specify neither x nor Fs, then 'MinPeakWidth' must be expressed in units of samples.
Data Types: double | single | duration
This is the data:
valores <- tibble::tibble(V1 = c(
0.04386573, 0.06169861, 0.03743560, 0.04512523, 0.04517977, 0.02927114, 0.04224937, 0.06596527, 2.15621006, 0.02547804, 0.03134409, 0.02867694,
0.08251871, 0.03252856, 0.06901365, 0.03201109, 0.04214851, 0.04679828, 0.04076178, 0.03922274, 1.65163662, 0.03630282, 0.04146608, 0.02618668,
0.04845364, 0.03202031, 0.03699149, 0.02811389, 0.03354410, 0.02975296, 0.03378896, 0.04440788, 0.46503730, 0.06128226, 0.01934736, 0.02055138,
0.04233819, 0.03398005, 0.02528630, 0.03694652, 0.02888223, 0.03463824, 0.04380172, 0.03297124, 0.04850558, 0.04579087, 1.48031231, 0.03735059,
0.04192204, 0.05789367, 0.03819694, 0.03344671, 0.05867103, 0.02590745, 0.05405133, 0.04941912, 0.63658824, 0.03134409, 0.04151859, 0.03502503,
0.02182294, 0.15397702, 0.02455722, 0.02775277, 0.04596132, 0.03900906, 0.03383408, 0.03517160, 0.02927114, 0.03888822, 0.03077891, 0.04236406,
0.05663730, 0.03619537, 0.04294887, 0.03497815, 0.03995837, 0.04374904, 0.03922274, 0.03596561, 0.03157820, 0.26390591, 0.06596527, 0.04050374,
0.02888223, 0.03824380, 0.05459656, 0.02969611, 0.86277224, 0.02385613, 0.03888451, 0.06496997, 0.03930725, 0.02931837, 0.06021005, 0.03330982,
0.02649659, 0.06600261, 0.02854480, 0.03691669, 0.06584168, 0.02076757, 0.02624355, 0.03679596, 0.03377049, 0.03590172, 0.03694652, 0.03575540,
0.02532416, 0.02818711, 0.04565318, 0.03252856, 0.04121822, 0.03147210, 0.05002047, 0.03809792, 0.02802299, 0.03399243, 0.03466543, 0.02829443,
0.03339476, 0.02129232, 0.03103367, 0.05071605, 0.03590172, 0.04386435, 0.03297124, 0.04323263, 0.03506247, 0.06225121, 0.02862442, 0.02862442,
0.06032925, 0.04400082, 0.03765090, 0.03477973, 0.02024540, 0.03564245, 0.05199116, 0.03699149, 0.03506247, 0.02129232, 0.02389752, 0.04996414,
0.04281258, 0.02587514, 0.03079668, 0.03895791, 0.02639014, 0.07333564, 0.02639014, 0.04074970, 0.04346211, 0.06032925, 0.03506247, 0.04950545,
0.04133673, 0.03835127, 0.02616212, 0.03399243, 0.02962473, 0.04800780, 0.03517160, 0.04105323, 0.03649472, 0.03000509, 0.05367187, 0.03858981,
0.03684529, 0.02941408, 0.04733265, 0.02590745, 0.02389752, 0.02385495, 0.03649472, 0.02508245, 0.02649659, 0.03152265, 0.02906310, 0.04950545,
0.03497815, 0.04374904, 0.03610649, 0.03799523, 0.02912771, 0.03694652, 0.05105353, 0.03000509, 0.02902378, 0.06425520, 0.05660319, 0.03065341,
0.04449069, 0.03638436, 0.02582273, 0.03753463, 0.02756006, 0.07215131, 0.02418869, 0.03431030, 0.04474425, 0.42589279, 0.02879489, 0.02872819,
0.02512494, 0.02450022, 0.03416346, 0.04560013, 1.40417366, 0.04784363, 0.04950545, 0.04685682, 0.03346052, 0.03255004, 0.07296053, 0.04491526,
0.02910482, 0.05448995, 0.01934736, 0.02195528, 0.03506247, 0.03157064, 0.03504810, 0.03754736, 0.03301058, 0.06886929, 0.03994190, 0.05130644,
0.21007323, 0.05630628, 0.02893721, 0.03683226, 0.03825290, 0.02494987, 0.02633410, 0.02721408, 0.03798986, 0.33473991, 0.04236406, 0.02389752,
0.03562747, 0.04662421, 0.02373767, 0.04918125, 0.04478894, 0.02418869, 0.03511514, 0.02871556, 0.05586166, 0.49014922, 0.03406339, 0.84823093,
0.03416346, 0.08729506, 0.03147210, 0.02889640, 0.06181828, 0.04940672, 0.03666858, 0.03019139, 0.03919279, 0.04864613, 0.03720420, 0.04726722,
0.04141298, 0.02862442, 0.29112744, 0.03964319, 0.05657445, 0.03930888, 0.04400082, 0.02722065, 0.03451685, 0.02911419, 0.02831578, 0.04001334,
0.05130644, 0.03134409, 0.03408579, 0.03232126, 0.03624218, 0.04708792, 0.06291741, 0.05663730, 0.03813209, 0.70582932, 0.04149421, 0.03607614,
0.03201109, 0.02055138, 0.03727305, 0.03182562, 0.02987404, 0.04142461, 0.03433624, 0.04264550, 0.02875086, 0.05797661, 0.04248705, 0.04476514))
From the data above, I obtain 22 peaks using pracma::findpeaks function with the code bellow:
picos_r <- pracma::findpeaks(-valores$V1, minpeakdistance = 10)
Using the MATLAB function
picos_matlab = findpeaks(-dado_r, 'MinPeakWidth', 10);
I obtain 11 peaks, as the following:
picos_matlab <- c(-0.02547804, -0.02618668, -0.01934736, -0.02182294, -0.0245572200000000, -0.0202454, -0.02385495, -0.01934736, -0.02373767, -0.02862442, -0.02722065)
I used pracma::findpeaks because it has already given an equal result in another part of the function that I am writting. I have already tried to change the code of the pracma::findpeaks, but with little success.