While in my opinion the need of testing private members/methods of a class is a code smell, I think that is technically feasible in C++.
As an example, suppose you have a Dog class with private members/methods except for the public constructor:
#include <iostream>
#include <string>
using namespace std;
class Dog {
public:
Dog(string name) { this->name = name; };
private:
string name;
string bark() { return name + ": Woof!"; };
static string Species;
static int Legs() { return 4; };
};
string Dog::Species = "Canis familiaris";
Now for some reason you would like to test the private ones. You could use privablic to achieve that.
Include a header named privablic.h along with the desired implementation like that:
#include "privablic.h"
#include "dog.hpp"
then map some stubs according to types of any instance member
struct Dog_name { typedef string (Dog::*type); };
template class private_member<Dog_name, &Dog::name>;
...and instance method;
struct Dog_bark { typedef string (Dog::*type)(); };
template class private_method<Dog_bark, &Dog::bark>;
do the same with all static instance members
struct Dog_Species { typedef string *type; };
template class private_member<Dog_Species, &Dog::Species>;
...and static instance methods.
struct Dog_Legs { typedef int (*type)(); };
template class private_method<Dog_Legs, &Dog::Legs>;
Now you can test them all:
#include <assert.h>
int main()
{
string name = "Fido";
Dog fido = Dog(name);
string fido_name = fido.*member<Dog_name>::value;
assert (fido_name == name);
string fido_bark = (&fido->*func<Dog_bark>::ptr)();
string bark = "Fido: Woof!";
assert( fido_bark == bark);
string fido_species = *member<Dog_Species>::value;
string species = "Canis familiaris";
assert(fido_species == species);
int fido_legs = (*func<Dog_Legs>::ptr)();
int legs = 4;
assert(fido_legs == legs);
printf("all assertions passed\n");
};
Output:
$ ./main
all assertions passed
You can look at the sources of test_dog.cpp and dog.hpp.
DISCLAIMER: Thanks to insights of other clever people, I have assembled the aforementioned "library" able to access to private members and methods of a given C++ class without altering its definition or behaviour. In order to make it work it's (obviously) required to know and include the implementation of the class.
NOTE: I revised the content of this answer in order to follow directives suggested by reviewers.