Given a random integer, for example, 19357982357627685397198. How can I compress these numbers into a string of text that has fewer characters?
The string of text must only contain numbers or alphabetical characters, both uppercase and lowercase.
I've tried Base64 and Huffman-coding that claim to compress, but none of them makes the string shorter when writing on a keyboard.
I also tried to make some kind of algorithm that tries to divide the integer by the numbers "2,3,...,10" and check if the last number in the result is the number it was divided by (looks for 0 in case of division by 10). So, when decrypting, you would just multiply the number by the last number in the integer. But that does not work because in some cases you can't divide by anything and the number would stay the same, and when it would be decrypted, it would just multiply it into a larger number than you started with.
I also tried to divide the integer into blocks of 2 numbers starting from left and giving a letter to them (a=1, b=2, o=15), and when it would get to z it would just roll back to a. This did not work because when it was decrypted, it would not know how many times the number rolled over z and therefore be a much smaller number than in the start.
I also tried some other common encryption strategies. For example Base32, Ascii85, Bifid Cipher, Baudot Code, and some others I can not remember.
It seems like an unsolvable problem. But because it starts with an integer, each number can contain 10 different combinations. While in the alphabet, letters can contain 26 different combinations. This makes it so that you can store more data in 5 alphabetical letters, than in a 5 digit integer. So it is possible to store more data in a string of characters than in an integer in mathematical means, but I just can't find anyone who has ever done it.