from collections import Counter
from sklearn.datasets import make_classification
from sklearn.decomposition import PCA
from imblearn.over_sampling import SMOTE
from imblearn.over_sampling import ADASYN
#Oversample using Adaptive Synthetic (ADASYN) algorithm
df_train = pd.read_csv('F:/Master_study/Research_data/data/lankershim_label_data.csv')
# Divide by class
X = df_train[df_train['target'] =='keep']
y = df_train[df_train['target'] =='changing']
X, y = ada.fit_resample(X, y)
ada = ADASYN(random_state=42)
X_resampled, y_resampled = ada.fit_resample(X, y)
X_res_vis = pca.transform(X_resampled)
print('Resampled dataset shape {}'.format(Counter(y_res)))
I am trying to do handle imbalanced data, and regenerate my label (which is less in number)