After some poking around, I think tmerge() in the survival package can achieve what stsplit var can do, which is to split episodes not just by a given cut points (same for all observations), but by when an event occurs for an individual.
This is the only way I knew how to split data
id<-c(1,2,3)
age<-c(19,20,29)
job<-c(1,1,0)
time<-age-16 ## create time since age 16 ##
data<-data.frame(id,age,job,time)
id age job time
1 1 19 1 3
2 2 20 1 4
3 3 29 0 13
## simple split by time ##
## 0 to up 2 years, 2-5 years, 5+ years ##
data2<-survSplit(data,cut=c(0,2,5),end="time",start="start",
event="job")
id age start time job
1 1 19 0 2 0
2 1 19 2 3 1
3 2 20 0 2 0
4 2 20 2 4 1
5 3 29 0 2 0
6 3 29 2 5 0
7 3 29 5 13 0
However, if I want to split by a certain variable, such as when each individuals finished school, each person might have a different cut point (finished school at different ages).
## split by time dependent variable (age finished school) ##
d1<-data.frame(id,age,time,job)
scend<-c(17,21,24)-16
d2<-data.frame(id,scend)
## create start/stop time ##
base<-tmerge(d1,d1,id=id,tstop=time)
## create time-dependent covariate ##
s1<-tmerge(base,d2,id=id,
finish=tdc(scend))
id age time job tstart tstop finish
1 1 19 3 1 0 1 0
2 1 19 3 1 1 3 1
3 2 20 4 1 0 4 0
4 3 29 13 0 0 8 0
5 3 29 13 0 8 13 1
I think tmerge() is more or less comparable with stsplit function in STATA.