You can take advantage of multiprocessing to run the simulations inside of subprocesses, and leverage the copy-on-write benefits of forking to unpickle/process the data only once at the start:
import multiprocessing
import pickle
# Need to use forking to get copy-on-write benefits!
mp = multiprocessing.get_context('fork')
# Load data once, in the parent process
data = pickle.load(open(DATA_ROOT + pickle_name, 'rb'))
def _run_simulation(_):
# Wrapper for `run_simulation` that takes one argument. The function passed
# into `multiprocessing.Pool.map` must take one argument.
run_simulation()
with mp.Pool() as pool:
pool.map(_run_simulation, range(num_simulations))
If you want to parameterize each simulation run, you can do so like so:
import multiprocessing
import pickle
# Need to use forking to get copy-on-write benefits!
mp = multiprocessing.get_context('fork')
# Load data once, in the parent process
data = pickle.load(open(DATA_ROOT + pickle_name, 'rb'))
with mp.Pool() as pool:
simulations = ('arg for simulation run', 'arg for another simulation run')
pool.map(run_simulation, simulations)
This way the run_simulation
function will be passed in the values from the simulations
tuple, which can allow for having each simulation run with different parameters, or even just assign each run a ID number of name for logging/saving purposes.
This whole approach relies on fork being available. For more information about using fork with Python's built-in multiprocessing library, see the docs about contexts and start methods. You may also want to consider using the forkserver
multiprocessing context (by using mp = multiprocessing.get_context('fork')
) for the reasons described in the docs.
If you don't want to run your simulations in parallel, this approach can be adapted for that. The key thing is that in order to only have to process the data once, you must call run_simulation
within the process that processed the data, or one of its child processes.
If, for instance, you wanted to edit what run_simulation
does, and then run it again at your command, you could do it with code resembling this:
main.py
:
import multiprocessing
from multiprocessing.connection import Connection
import pickle
from data import load_data
# Load/process data in the parent process
load_data()
# Now child processes can access the data nearly instantaneously
# Need to use forking to get copy-on-write benefits!
mp = multiprocessing.get_context('fork') # Consider using 'forkserver' instead
# This is only ever run in child processes
def load_and_run_simulation(result_pipe: Connection) -> None:
# Import `run_simulation` here to allow it to change between runs
from simulation import run_simulation
# Ensure that simulation has not been imported in the parent process, as if
# so, it will be available in the child process just like the data!
try:
run_simulation()
except Exception as ex:
# Send the exception to the parent process
result_pipe.send(ex)
else:
# Send this because the parent is waiting for a response
result_pipe.send(None)
def run_simulation_in_child_process() -> None:
result_pipe_output, result_pipe_input = mp.Pipe(duplex=False)
proc = mp.Process(
target=load_and_run_simulation,
args=(result_pipe_input,)
)
print('Starting simulation')
proc.start()
try:
# The `recv` below will wait until the child process sends sometime, or
# will raise `EOFError` if the child process crashes suddenly without
# sending an exception (e.g. if a segfault occurs)
result = result_pipe_output.recv()
if isinstance(result, Exception):
raise result # raise exceptions from the child process
proc.join()
except KeyboardInterrupt:
print("Caught 'KeyboardInterrupt'; terminating simulation")
proc.terminate()
print('Simulation finished')
if __name__ == '__main__':
while True:
choice = input('\n'.join((
'What would you like to do?',
'1) Run simulation',
'2) Exit\n',
)))
if choice.strip() == '1':
run_simulation_in_child_process()
elif choice.strip() == '2':
exit()
else:
print(f'Invalid option: {choice!r}')
data.py
:
from functools import lru_cache
# <obtain 'DATA_ROOT' and 'pickle_name' here>
@lru_cache
def load_data():
with open(DATA_ROOT + pickle_name, 'rb') as f:
return pickle.load(f)
simulation.py
:
from data import load_data
# This call will complete almost instantaneously if `main.py` has been run
data = load_data()
def run_simulation():
# Run the simulation using the data, which will already be loaded if this
# is run from `main.py`.
# Anything printed here will appear in the output of the parent process.
# Exceptions raised here will be caught/handled by the parent process.
...
The three files detailed above should all be within the same directory, alongside an __init__.py
file that can be empty. The main.py
file can be renamed to whatever you'd like, and is the primary entry-point for this program. You can run simulation.py
directly, but that will result in a long time spent loading/processing the data, which was the problem you ran into initially. While main.py
is running, the file simulation.py
can be edited, as it is reloaded every time you run the simulation from main.py
.
For macOS users: forking on macOS can be a bit buggy, which is why Python defaults to using the spawn
method for multiprocessing on macOS, but still supports fork
and forkserver
for it. If you're running into crashes or multiprocessing-related issues, try adding OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES
to your environment. See https://stackoverflow.com/a/52230415/5946921 for more details.