I'm not exactly sure what the result should be, but we can create a named vector of new variables and splice it into mutate
with !!!
:
library(dplyr)
names_variables <- c("Sepal.Length",
"Sepal.Width",
"Petal.Length",
"Petal.Width",
"Species",
"State",
"Type")
difference <- setdiff(names_variables,names(iris))
new_vars <- setNames(rep(NA, length(difference)), difference)
iris %>%
as_tibble() %>% # for printing
mutate(!!! new_vars)
#> # A tibble: 150 x 7
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species State Type
#> <dbl> <dbl> <dbl> <dbl> <fct> <lgl> <lgl>
#> 1 5.1 3.5 1.4 0.2 setosa NA NA
#> 2 4.9 3 1.4 0.2 setosa NA NA
#> 3 4.7 3.2 1.3 0.2 setosa NA NA
#> 4 4.6 3.1 1.5 0.2 setosa NA NA
#> 5 5 3.6 1.4 0.2 setosa NA NA
#> 6 5.4 3.9 1.7 0.4 setosa NA NA
#> 7 4.6 3.4 1.4 0.3 setosa NA NA
#> 8 5 3.4 1.5 0.2 setosa NA NA
#> 9 4.4 2.9 1.4 0.2 setosa NA NA
#> 10 4.9 3.1 1.5 0.1 setosa NA NA
#> # … with 140 more rows
Created on 2021-06-09 by the reprex package (v0.3.0)
Alternatively with base r:
names_variables <- c("Sepal.Length",
"Sepal.Width",
"Petal.Length",
"Petal.Width",
"Species",
"State",
"Type")
difference <- setdiff(names_variables, names(iris))
iris[, difference] <- NA
head(iris)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species State Type
#> 1 5.1 3.5 1.4 0.2 setosa NA NA
#> 2 4.9 3.0 1.4 0.2 setosa NA NA
#> 3 4.7 3.2 1.3 0.2 setosa NA NA
#> 4 4.6 3.1 1.5 0.2 setosa NA NA
#> 5 5.0 3.6 1.4 0.2 setosa NA NA
#> 6 5.4 3.9 1.7 0.4 setosa NA NA
Created on 2021-06-09 by the reprex package (v0.3.0)