tl;dr
( ( GregorianCalendar ) myCal ) // Cast from a general `Calendar` to specific subclass `GregorianCalendar`.
.toZonedDateTime() // Convert from troublesome legacy class to modern java.time class, `ZonedDateTime`.
.toInstant() // Extract a UTC-specific value, an `Instant` object.
java.time
The modern approach uses java.time classes.
Convert your legacy Calendar
object (if GregorianCalendar
) to a ZonedDateTime
. Call new conversion methods added to the old classes.
GregorianCalendar gc = ( GregorianCalendar ) myCal ;
ZonedDateTime zdt = gc.toZonedDateTime() ;
Now extract an Instant
, a value always in UTC. You can think of it this way conteptually: ZonedDateTime = ( Instant + ZoneId )
Instant instant = zdt.toInstant() ;
For more flexibility such as generating strings in various formats, convert to an OffsetDateTime
object.
OffsetDateTime odt = instant.atOffset( ZoneOffset.UTC ) ;
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date
, Calendar
, & SimpleDateFormat
.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
Using a JDBC driver compliant with JDBC 4.2 or later, you may exchange java.time objects directly with your database. No need for strings nor java.sql.* classes.
Where to obtain the java.time classes?
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval
, YearWeek
, YearQuarter
, and more.