I think this problem can be solved in many different ways, but I basically want to find a function that will give me a dataframe with every combination of values from a list into its columns, including the incomplete sets and excluding some, but not all, redundant combinations (order isn't important for now).
So I might start out with a list like this:
List = c("A","B","C")
and I want to get a dataframe that looks like
C1 = c("A","B","C","A","A","B","A")
C2 = c("","","","B","C","C","B")
C3 = c("","","","","","","C")
df <- cbind(C1, C2, C3)
row.names(df) <- c("A", "B", "C", "AB", "AC", "BC", "ABC")
colnames(df) <- c("First_Item", "Second_Item","Third_Item")
And then it fills in each cell with the corresponding letter. e.g. position A1 in the df would be "A", positions A2 and A3 would be empty.
any idea how to do this?
I tried with dplyr:
library(tidyr)
list_1 = c("A", "B", "C", "NA")
list_2 = c("A", "B", "C", "NA")
list_3 = c("A", "B", "C", "NA")
list_4 = c("A", "B", "C", "NA")
test <- crossing(list_1, list_2,list_3,list_4)
test <- test[apply(test, MARGIN = 1, FUN = function(x) !(duplicated(x) | !any = "NA")),]
But I want to keep all the values with multiple NAs in them, so this doesn't quite work.
expand.grid has the same problem
expand.grid(list_1 = c("A", "B", "C", "NA"),list_2 = c("A", "B", "C", "NA"),list_3 = c("A", "B", "C", "NA"),list_4 = c("A", "B", "C", "NA"))