The Donald Knuth based Fibonacci-by-matrix multiplication approach, as provided by
Mostowski Collapse, but more explicit.
Algorithms can be found in the a module file plus a unit tests file on github:
The principle is based on a matrix identity provided by Donald Knuth (in Donald E. Knuth. The Art of Computer Programming. Volume 1. Fundamental
Algorithms, p.80 of the second edition)

For n >= 1 we have (for n=0, the identity matrix appears on the right-hand side, but it is unclear what fib(-1) is):
n
[ fib(n+1) fib(n) ] [ 1 1 ]
[ ] = [ ]
[ fib(n) fib(n-1) ] [ 1 0 ]
But if we work with constants fib(0) and fib(1) without assuming their value to be 0 and 1 respectively (we might be working with a special Fibonacci sequence), then we must stipulate that for n >= 1:
n-1
[ fib(n+1) fib(n) ] [ fib(2) fib(1) ] [ 1 1 ]
[ ] = [ ] * [ ]
[ fib(n) fib(n-1) ] [ fib(1) fib(0) ] [ 1 0 ]
We will separately compute the the "power matrix" on the right and explicitly multiply with the "fibonacci starter matrix", thus:
const(fib0,0).
const(fib1,1).
fib_matrixmult(N,F) :-
N>=1,
!,
Pow is N-1,
const(fib0,Fib0),
const(fib1,Fib1),
Fib2 is Fib0+Fib1,
matrixpow(
Pow,
[[1,1],[1,0]],
PowMx),
matrixmult(
[[Fib2,Fib1],[Fib1,Fib0]],
PowMx,
[[_,F],[F,_]]).
fib_matrixmult(0,Fib0) :-
const(fib0,Fib0).
matrixpow(Pow, Mx, Result) :-
matrixpow_2(Pow, Mx, [[1,0],[0,1]], Result).
matrixpow_2(Pow, Mx, Accum, Result) :-
Pow > 0,
Pow mod 2 =:= 1,
!,
matrixmult(Mx, Accum, NewAccum),
Powm is Pow-1,
matrixpow_2(Powm, Mx, NewAccum, Result).
matrixpow_2(Pow, Mx, Accum, Result) :-
Pow > 0,
Pow mod 2 =:= 0,
!,
HalfPow is Pow div 2,
matrixmult(Mx, Mx, MxSq),
matrixpow_2(HalfPow, MxSq, Accum, Result).
matrixpow_2(0, _, Accum, Accum).
matrixmult([[A11,A12],[A21,A22]],
[[B11,B12],[B21,B22]],
[[C11,C12],[C21,C22]]) :-
C11 is A11*B11+A12*B21,
C12 is A11*B12+A12*B22,
C21 is A21*B11+A22*B21,
C22 is A21*B12+A22*B22.
If your starter matrix is sure to be [[1,1],[1,0]]
you can collapse the two operations matrixpow/3
followed by matrixmult/3
in the main predicate into a single call to matrixpow/3
.
The above algorithm computes "too much" because two of the values in the matrix of Fibonacci numbers can be deduced from the other two. We can get rid of that redundancy. Mostowski Collapse presented a compact algorithm to do just that. Hereunder expanded for comprehensibility:
The idea is to get rid of redundant operations in matrixmult/3
, by using the fact that all our matrices are symmetric and actually hold
Fibonacci numbers
[ fib(n+1) fib(n) ]
[ ]
[ fib(n) fib(n-1) ]
So, if we multiply matrices A and B to yield C, we always have something of this form (even in the starter case where B is the
identity matrix):
[ A1+A2 A1 ] [ B1+B2 B1 ] [ C1+C2 C1 ]
[ ] * [ ] = [ ]
[ A1 A2 ] [ B1 B2 ] [ C1 C2 ]
We can just retain the second columns of each matrix w/o loss of
information. The operation between these vectors is not some
standard operation like multiplication, let's mark it with ⨝:
[ A1 ] [ B1 ] [ C1 ]
[ ] ⨝ [ ] = [ ]
[ A2 ] [ B2 ] [ C2 ]
where:
C1 = B1*(A1+A2) + B2*A1 or A1*(B1+B2) + A2*B1
C2 = A1*B1 + A2*B2
fib_matrixmult_streamlined(N,F) :-
N>=1,
!,
Pow is N-1,
const(fib0,Fib0),
const(fib1,Fib1),
matrixpow_streamlined(
Pow,
v(1,0),
PowVec),
matrixmult_streamlined(
v(Fib1,Fib0),
PowVec,
v(F,_)).
fib_matrixmult_streamlined(0,Fib0) :-
const(fib0,Fib0).
matrixpow_streamlined(Pow, Vec, Result) :-
matrixpow_streamlined_2(Pow, Vec, v(0,1), Result).
matrixpow_streamlined_2(Pow, Vec, Accum, Result) :-
Pow > 0,
Pow mod 2 =:= 1,
!,
matrixmult_streamlined(Vec, Accum, NewAccum),
Powm is Pow-1,
matrixpow_streamlined_2(Powm, Vec, NewAccum, Result).
matrixpow_streamlined_2(Pow, Vec, Accum, Result) :-
Pow > 0,
Pow mod 2 =:= 0,
!,
HalfPow is Pow div 2,
matrixmult_streamlined(Vec, Vec, VecVec),
matrixpow_streamlined_2(HalfPow, VecVec, Accum, Result).
matrixpow_streamlined_2(0, _, Accum, Accum).
matrixmult_streamlined(v(A1,A2),v(B1,B2),v(C1,C2)) :-
C1 is A1*(B1+B2) + A2*B1,
C2 is A1*B1 + A2*B2.