I'm working with DocumentDB in AWS, and I've been having troubles when I try to read from the same collection simultaneously from different aggregation queries.
The issue is not that I cannot read from the database, but rather that it takes a lot of time to complete the queries. It doesn't matter if I trigger the queries simultaneously or one after the other.
I'm using a Lambda Function with NodeJS to run my code. And I'm using mongoose to handle the connection with the database.
Here's a sample code that I put together to illustrate my problem:
query1() {
return Collection.aggregate([...])
}
query2() {
return Collection.aggregate([...])
}
query3() {
return Collection.aggregate([...])
}
It takes the same time if I run it using Promise.all
Promise.all([ query1(), query2(), query3() ])
Than if I run it waiting for the previous one to finish
query1().then(result1 => query2().then(result3 => query3()))
While if I run each query in different Lambda Executions, it takes significantly less time for each individual query to finish (Between 1 and 2 seconds).
So if they were running in parallel the execution should be finished with the time of the query that takes the most time (2 seconds), and not take 7 seconds, as it does now.
So my guessing is that the instance of DocumentDB is running the queries in sequence no matter how I send them. In the collection there are around 19,000 documents with a total size of almost 25Mb.
When I check the metrics of the instance, the CPUUtilization is barely over 8% and the RAM available only drops by 20Mb. So I don't think the problem of the delay has to do with the size of the instance.
Do you know why DocumentDB is behaving like this? Is there a configuration that I can change to run the aggregations in parallel?