Based on accepted answer, a simple parallelization improved enough that this operation is no longer the most critical time-wise
For future reference, this:
g.V().hasLabel(LABEL_INTERMEDIATE_COLUMN).not(inE(EDGE_DEPEND)).drop().iterate();
is now something like this:
ExecutorService executor = Executors.newFixedThreadPool(4);
int iterator = 0;
final int batchsize = 10000;
Long count = g.V().hasLabel(LABEL_INTERMEDIATE_COLUMN).not(inE(EDGE_DEPEND)).count().next();
List<Callable<Object>> callableList = new ArrayList<Callable<Object>>();
// splitting current set into tasks to be executed in para
while (iterator * batchsize < count) {
final Set<Object> vSet = g.V().hasLabel(LABEL_INTERMEDIATE_COLUMN).not(inE(EDGE_DEPEND)).skip(iterator * batchsize).limit(batchsize).id().toSet();
callableList.add(() -> g.V(vSet).drop().iterate());
iterator++;
}
List<Future<Object>> results = executor.invokeAll(callableList);
After some tests, I decided to keep the iteration in a single thread. That way the distributed tasks are really independent of each other (e.g.: one task completing won't affect other task query).
Keep in mind that the actual removal is still single thread, as the vertex node map modification is behind concurrent access locks.
The effect is that increasing threads won't get better results (personally tried 8). And based on some thread dumps, even 4 might be too much (there is always 1 or more thread in a waiting status) - although I did get a dump with 3 threads running!