Related to this question: Pair combinations in scheme, I'm trying to write a function that creates possible sequences of a list. I'm also trying to annotate it to myself with some let
s, rather than putting everything in map
s. Here is what I have so far:
(define (remove-from-list elem L)
(filter (lambda (x) (not (= x elem))) L))
(define (prepend-element-to-list-of-lists elem L)
(map (lambda (x) (append (list elem) x)) L))
(define (perm L)
; returns a list of lists, so base case will be '(()) rather than '()
(if (null? L) '(())
; we will take out the first element, this is our "prepend-item"
(let ((prepend-element (car L))
(list-minus-self (remove-from-list (car L) L)))
; prepend-to-list-of-lists
(let ((other-lists-minus-self (perm list-minus-self)))
(prepend-element-to-list-of-lists prepend-element other-lists-minus-self)
))))
(perm3 '(1 2 3))
((1 2 3)) ; seems to be stopping before doing the recursive cases/iterations.
What I'm trying to do here is to take out the first element of a list, and prepend that to all list-of-lists that would be created by the procedure without that element. For example, for [1,2,3]
the first case would be:
Take out 1
--> prepended to combinations from [2,3]
, and so eventually it comes to [1,2,3]
and [1,3,2]
.
However, I was seeing if I can do this without map
and just calling itself. Is there a way to do that, or is map
the only way to do the above for 1
, then 2
, then 3
, ...
And related to this, for the "working normal case", why does the following keep nesting parentheticals?
(define (perm L)
(if (null? L) '(())
; (apply append <-- why is this part required?
(map (lambda (elem)
(map (lambda (other_list) (cons elem other_list))
(perm (remove-from-list elem L))))
L)))
; )
That is, without doing an (apply append)
outside the map
, I get the "correct" answer, but with tons of nested parens: (((1 (2 (3))) (1 (3 (2)))) ((2 (1 (3))) (2 (3 (1)))) ((3 (1 (2))) (3 (2 (1)))))
. I suppose if someone could just show an example of a more basic setup where a map 'telescopes' without the big function that might be helpful.