In this question, I had asked how to combine PySpark data frames with a different number of columns. The answer given required that each data frame had to have the same number of columns to combine them all:
from pyspark.sql import SparkSession
from pyspark.sql.functions import lit
spark = SparkSession.builder\
.appName("DynamicFrame")\
.getOrCreate()
df01 = spark.createDataFrame([(1, 2, 3), (9, 5, 6)], ("C1", "C2", "C3"))
df02 = spark.createDataFrame([(11,12, 13), (10, 15, 16)], ("C2", "C3", "C4"))
df03 = spark.createDataFrame([(111,112), (110, 115)], ("C1", "C4"))
dataframes = [df01, df02, df03]
# Create a list of all the column names and sort them
cols = set()
for df in dataframes:
for x in df.columns:
cols.add(x)
cols = sorted(cols)
# Create a dictionary with all the dataframes
dfs = {}
for i, d in enumerate(dataframes):
new_name = 'df' + str(i) # New name for the key, the dataframe is the value
dfs[new_name] = d
# Loop through all column names. Add the missing columns to the dataframe (with value 0)
for x in cols:
if x not in d.columns:
dfs[new_name] = dfs[new_name].withColumn(x, lit(0))
dfs[new_name] = dfs[new_name].select(cols) # Use 'select' to get the columns sorted
# Now put it al together with a loop (union)
result = dfs['df0'] # Take the first dataframe, add the others to it
dfs_to_add = dfs.keys() # List of all the dataframes in the dictionary
dfs_to_add.remove('df0') # Remove the first one, because it is already in the result
for x in dfs_to_add:
result = result.union(dfs[x])
result.show()
Is there any way to combine PySpark data frames without having to ensure that all the data frames have the same number of columns? The reason I ask is that it took about 2 days for 100 data frames to be merged but the process timed out using the above code.