I am trying to combine two dataframes.
new = pd.DataFrame()
new['a'] = df['totalconfirmed'][386:]
new['b'] = df['totalrecovered'][386:]
compare['actual_infected'] = new['a']
compare['actual_recovered'] = new['b']
OUTPUT is for compare.head()
:
actual_infected actual_recovered
30081975 29056435
30133634 29120804
30182402 29185623
30232246 29243489
30278744 29302029
prediction
is a dataframe that I calculated using a SIR model. It has three columns and has the same number of rows as compare
. I have also checked the datatypes for EVERY column in both the dataframes and all of them are Series even after np.array
.
This output is after I have transformed my new['a']
and new['b']
to array using np.array
. But when I try to combine this dataframe with another dataframe containing the predicted infected and recovered values I get:
df1 = [prediction, compare]
result = pd.concat(df1, ignore_index = True)
print(result)
date pred_infected pred_recovered actual_infected actual_recovered
2021-02-19 1.295474e+08 34268136.0 NaN NaN
2021-02-20 4.345577e+08 53006146.0 NaN NaN
2021-02-21 8.682628e+08 100374686.0 NaN NaN
2021-02-22 1.074353e+09 171983070.0 NaN NaN
2021-02-23 1.083615e+09 250319518.0 NaN NaN
... ... ... ... ...
NaN NaN NaN 30081975 29056435
NaN NaN NaN 30133634 29120804
NaN NaN NaN 30182402 29185623
NaN NaN NaN 30232246 29243489
NaN NaN NaN 30278744 29302029
I don't understand what is there left to do.