1

I'm trying to convert pytorch model to tf.keras model including weights conversion and came across an output missmatch between libraries' outputs.

Here I define two convolutional layers, which should be identical

torch_layer = torch.nn.Conv2d(
    in_channels=3,
    out_channels=64,
    kernel_size=(7, 7),
    stride=(2, 2),
    padding=(3, 3),
    dilation=1,
    groups=1,
    bias=False,
    padding_mode='zeros'
)

tf_layer = tf.keras.layers.Conv2D(
    filters=64,
    kernel_size=(7, 7),
    strides=(2, 2),
    padding='same',
    dilation_rate=(1, 1),
    groups=1,
    activation=None,
    use_bias=False
)
# define model to specify input channel size
tf_model = tf.keras.Sequential([tf.keras.layers.Input((256, 256, 3), batch_size=1), tf_layer])

now I have torch weights and I convert them to tf.keras format

# output_channels, input_channels, x, y
torch_weights = np.random.rand(64, 3, 7, 7)
# x, y, input_channels, output_channels
tf_weights = np.transpose(torch_weights, (2, 3, 1, 0))

# assign weights
torch_layer.weight = torch.nn.Parameter(torch.Tensor(torch_weights))
tf_model.layers[0].set_weights([tf_weights])

now I define input and the outputs are different (shape is the same, values are different), what am I doing wrong?

torch_inputs = np.random.rand(1, 3, 256, 256)
tf_inputs = np.transpose(torch_inputs, (0, 2, 3, 1))

torch_output = torch_layer(torch.Tensor(torch_inputs))
tf_output = tf_model.layers[0](tf_inputs)
Dominik Ficek
  • 544
  • 5
  • 18

1 Answers1

1

In tensorflow, set_weights is basically used for outputs from get_weights, so it is better to use assign to avoid making mistakes.

Besides, 'same' padding in tensorflow is a little bit complicated. For details, see my SO answer. It depends on input_shape, kernel_size and strides. In your example here, it is translated to torch.nn.ZeroPad2d((2,3,2,3)) in pytorch.

Example codes: from tensorflow to pytorch

np.random.seed(88883)

#initialize the layers respectively
torch_layer = torch.nn.Conv2d(
    in_channels=3,
    out_channels=64,
    kernel_size=(7, 7),
    stride=(2, 2),
    bias=False
)
torch_model = torch.nn.Sequential(
              torch.nn.ZeroPad2d((2,3,2,3)),
              torch_layer
              )

tf_layer = tf.keras.layers.Conv2D(
    filters=64,
    kernel_size=(7, 7),
    strides=(2, 2),
    padding='same',
    use_bias=False
)

#setting weights in torch layer and tf layer respectively
torch_weights = np.random.rand(64, 3, 7, 7)
tf_weights = np.transpose(torch_weights, (2, 3, 1, 0))

with torch.no_grad():
  torch_layer.weight = torch.nn.Parameter(torch.Tensor(torch_weights))

tf_layer(np.zeros((1,256,256,3)))
tf_layer.kernel.assign(tf_weights)

#prepare inputs and do inference
torch_inputs = torch.Tensor(np.random.rand(1, 3, 256, 256))
tf_inputs = np.transpose(torch_inputs.numpy(), (0, 2, 3, 1))

with torch.no_grad():
  torch_output = torch_model(torch_inputs)
tf_output = tf_layer(tf_inputs)

np.allclose(tf_output.numpy() ,np.transpose(torch_output.numpy(),(0, 2, 3, 1))) #True

Edit: from pytorch to tensorflow

torch_layer = torch.nn.Conv2d(
    in_channels=3,
    out_channels=64,
    kernel_size=(7, 7),
    stride=(2, 2),
    padding=(3, 3),
    bias=False
)

tf_layer=tf.keras.layers.Conv2D(
    filters=64,
    kernel_size=(7, 7),
    strides=(2, 2),
    padding='valid',
    use_bias=False
    )

tf_model = tf.keras.Sequential([
           tf.keras.layers.ZeroPadding2D((3, 3)),
           tf_layer
           ])
Innat
  • 16,113
  • 6
  • 53
  • 101
Laplace Ricky
  • 1,540
  • 8
  • 7
  • This means I just have to manually use `ZeroPadding2D` layer before conv layers and use `'valid'` padding instead of `'same'` since I have fixed torch model. Anyway thanks, this solves my issue! – Dominik Ficek Jun 29 '21 at 00:30
  • Yes, I just edited the answer. Sorry for mistaking the direction of conversion. – Laplace Ricky Jun 29 '21 at 02:07