I have this data
X_regression = tf.range(0, 1000, 5)
y_regression = X + 100
X_reg_train, X_reg_test = X_regression[:150], X_regression[150:]
y_reg_train, y_reg_test = y_regression[:150], y_regression[150:]
I inspect the data input data
X_reg_train[0], X_reg_train[0].shape, X_reg_train[0].ndim
and it returns:
(<tf.Tensor: shape=(), dtype=int32, numpy=0>, TensorShape([]), 0)
I build a model:
# Set the random seed
tf.random.set_seed(42)
# Create the model
model_reg = tf.keras.models.Sequential()
# Add Input layer
model_reg.add(tf.keras.layers.InputLayer(input_shape=[1]))
# Add Hidden layers
model_reg.add(tf.keras.layers.Dense(units=10, activation=tf.keras.activations.relu))
# Add last layer
model_reg.add(tf.keras.layers.Dense(units=1))
# Compile the model
model_reg.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.mae,
metrics=[tf.keras.metrics.mae])
# Fit the model
model_reg.fit(X_reg_train, y_reg_train, epochs=10)
The model works.
However, I am confused about input_shape
Why is it [1]
in this situation? Why is it sometimes a tuple?
Would appreciate an explanation of different formats of input_shape
in different situations.