In R, the is.na() function returns a dataset where Null values are true, while Not Null values are false:
col1 | col2 |
---|---|
Null | 1 |
1 | Null |
Null | Null |
1 | 1 |
is.na() -->
col1 | col2 |
---|---|
True | False |
False | True |
True | True |
False | False |
I'm wondering if there is an equivalent pyspark function that returns the dataframe, populated with True/False values, I do not want to use pyspark filter/where as that will not return the full dataset.
Thanks in advance!
PS: If my formatting is off, please let me know, this is my first stack overflow post so not 100% sure how the formatting works