93

Say you want to convert a matrix to a list, where each element of the list contains one column. list() or as.list() obviously won't work, and until now I use a hack using the behaviour of tapply :

x <- matrix(1:10, ncol = 2)

tapply(x, rep(1:ncol(x), each = nrow(x)), function(i) i)

I'm not completely happy with this. Anybody knows a cleaner method I'm overlooking?

(for making a list filled with the rows, the code can obviously be changed to :

tapply(x, rep(1:nrow(x), ncol(x)), function(i) i)

)

Henrik
  • 65,555
  • 14
  • 143
  • 159
Joris Meys
  • 106,551
  • 31
  • 221
  • 263
  • 1
    I wonder if optimized Rccp solution could be faster. – Marek Jul 27 '11 at 10:08
  • 3
    With R 3.6 released years ago, [this answer](https://stackoverflow.com/a/60078355/1870254) (using `asplit`) should be the accepted one. – jan-glx Jun 30 '21 at 19:02

16 Answers16

87

Gavin's answer is simple and elegant. But if there are many columns, a much faster solution would be:

lapply(seq_len(ncol(x)), function(i) x[,i])

The speed difference is 6x in the example below:

> x <- matrix(1:1e6, 10)
> system.time( as.list(data.frame(x)) )
   user  system elapsed 
   1.24    0.00    1.22 
> system.time( lapply(seq_len(ncol(x)), function(i) x[,i]) )
   user  system elapsed 
    0.2     0.0     0.2 
Tommy
  • 39,997
  • 12
  • 90
  • 85
  • 2
    +1 Good point about relative efficiency of the various solutions. The best Answer thus far. – Gavin Simpson Jul 30 '11 at 08:57
  • But I think in order to get the same results you need to do lapply(seq_len(nrow(x)), function(i) x[i,]) and then is slower. – skan Nov 01 '19 at 21:15
77

In the interests of skinning the cat, treat the array as a vector as if it had no dim attribute:

 split(x, rep(1:ncol(x), each = nrow(x)))
mdsumner
  • 29,099
  • 6
  • 83
  • 91
  • 9
    This is core of what `tapply` do. But it's simpler :). Probably slower but nice-looking solution will be `split(x, col(x))` (and `split(x, row(x))` respectively). – Marek Jul 27 '11 at 08:49
  • 1
    I checked it. Equally fast will be `split(x, c(col(x)))`. But it looks worse. – Marek Jul 27 '11 at 09:16
  • 2
    split(x, col(x)) looks better - implicit coercion to vector is fine . . . – mdsumner Jul 27 '11 at 23:07
  • 2
    After much testing, this seems to work the fastest, especially with a lot of row or columns. – Joris Meys Mar 02 '12 at 14:24
  • indeed, as underlined by @JorisMeys this solution is fastest. Benchmark with matrix 100000x150: mean time = 2.897655s with this solution and 3.096364s with tapply. – Simon C. May 25 '18 at 15:51
  • 2
    Note that if `x` has column names then `split(x, col(x, as.factor = TRUE))` will preserve the names. – banbh Aug 20 '18 at 15:48
30

data.frames are stored as lists, I believe. Therefore coercion seems best:

as.list(as.data.frame(x))
> as.list(as.data.frame(x))
$V1
[1] 1 2 3 4 5

$V2
[1]  6  7  8  9 10

Benchmarking results are interesting. as.data.frame is faster than data.frame, either because data.frame has to create a whole new object, or because keeping track of the column names is somehow costly (witness the c(unname()) vs c() comparison)? The lapply solution provided by @Tommy is faster by an order of magnitude. The as.data.frame() results can be somewhat improved by coercing manually.

manual.coerce <- function(x) {
  x <- as.data.frame(x)
  class(x) <- "list"
  x
}

library(microbenchmark)
x <- matrix(1:10,ncol=2)

microbenchmark(
  tapply(x,rep(1:ncol(x),each=nrow(x)),function(i)i) ,
  as.list(data.frame(x)),
  as.list(as.data.frame(x)),
  lapply(seq_len(ncol(x)), function(i) x[,i]),
  c(unname(as.data.frame(x))),
  c(data.frame(x)),
  manual.coerce(x),
  times=1000
  )

                                                      expr     min      lq
1                                as.list(as.data.frame(x))  176221  183064
2                                   as.list(data.frame(x))  444827  454237
3                                         c(data.frame(x))  434562  443117
4                              c(unname(as.data.frame(x)))  257487  266897
5             lapply(seq_len(ncol(x)), function(i) x[, i])   28231   35929
6                                         manual.coerce(x)  160823  167667
7 tapply(x, rep(1:ncol(x), each = nrow(x)), function(i) i) 1020536 1036790
   median      uq     max
1  186486  190763 2768193
2  460225  471346 2854592
3  449960  460226 2895653
4  271174  277162 2827218
5   36784   37640 1165105
6  171088  176221  457659
7 1052188 1080417 3939286

is.list(manual.coerce(x))
[1] TRUE
Ari B. Friedman
  • 71,271
  • 35
  • 175
  • 235
22

Use asplit to convert a matrix into a list of vectors. Use the MARGIN argument to give the margins to split by. For a matrix 1 indicates rows, 2 indicates columns.

asplit(x, MARGIN = 1) # split into list of row vectors
asplit(x, MARGIN = 2) # split into list of column vectors
Henrik
  • 65,555
  • 14
  • 143
  • 159
Jeff Bezos
  • 1,929
  • 13
  • 23
17

Converting to a data frame thence to a list seems to work:

> as.list(data.frame(x))
$X1
[1] 1 2 3 4 5

$X2
[1]  6  7  8  9 10
> str(as.list(data.frame(x)))
List of 2
 $ X1: int [1:5] 1 2 3 4 5
 $ X2: int [1:5] 6 7 8 9 10
Gavin Simpson
  • 170,508
  • 25
  • 396
  • 453
13

Using plyrcan be really useful for things like this:

library("plyr")

alply(x,2)

$`1`
[1] 1 2 3 4 5

$`2`
[1]  6  7  8  9 10

attr(,"class")
[1] "split" "list" 
Sacha Epskamp
  • 46,463
  • 20
  • 113
  • 131
6

I know this is anathema in R, and I don't really have a lot of reputation to back this up, but I'm finding a for loop to be rather more efficient. I'm using the following function to convert matrix mat to a list of its columns:

mat2list <- function(mat)
{
    list_length <- ncol(mat)
    out_list <- vector("list", list_length)
    for(i in 1:list_length) out_list[[i]] <- mat[,i]
    out_list
}

Quick benchmark comparing with mdsummer's and the original solution:

x <- matrix(1:1e7, ncol=1e6)

system.time(mat2list(x))
   user  system elapsed 
  2.728   0.023   2.720 

system.time(split(x, rep(1:ncol(x), each = nrow(x))))
   user  system elapsed 
  4.812   0.194   4.978 

system.time(tapply(x,rep(1:ncol(x),each=nrow(x)),function(i)i))
   user  system elapsed 
 11.471   0.413  11.817 
alfymbohm
  • 115
  • 1
  • 8
  • Of course this drops column names, but it doesn't seem they were important in the original question. – alfymbohm Aug 02 '13 at 11:39
  • 2
    Tommy's solution is faster and more compact: `system.time( lapply(seq_len(ncol(x)), function(i) x[,i]) ) user: 1.668 system: 0.016 elapsed: 1.693` – alfymbohm Aug 04 '13 at 08:46
  • Trying to figure this out in a different context, doesn't work: https://stackoverflow.com/questions/63801018 .... looking for this: `vec2 = castMatrixToSequenceOfLists(vecs);` – mshaffer Sep 08 '20 at 20:45
6

The new function asplit() will be coming to base R in v3.6. Up until then and in similar spirit to the answer of @mdsumner we can also do

split(x, slice.index(x, MARGIN))

as per the docs of asplit(). As previously shown however, all split() based solutions are much slower than @Tommy's lapply/`[`. This also holds for the new asplit(), at least in its current form.

split_1 <- function(x) asplit(x, 2L)
split_2 <- function(x) split(x, rep(seq_len(ncol(x)), each = nrow(x)))
split_3 <- function(x) split(x, col(x))
split_4 <- function(x) split(x, slice.index(x, 2L))
split_5 <- function(x) lapply(seq_len(ncol(x)), function(i) x[, i])

dat <- matrix(rnorm(n = 1e6), ncol = 100)

#> Unit: milliseconds
#>          expr       min        lq     mean   median        uq        max neval
#>  split_1(dat) 16.250842 17.271092 20.26428 18.18286 20.185513  55.851237   100
#>  split_2(dat) 52.975819 54.600901 60.94911 56.05520 60.249629 105.791117   100
#>  split_3(dat) 32.793112 33.665121 40.98491 34.97580 39.409883  74.406772   100
#>  split_4(dat) 37.998140 39.669480 46.85295 40.82559 45.342010  80.830705   100
#>  split_5(dat)  2.622944  2.841834  3.47998  2.88914  4.422262   8.286883   100

dat <- matrix(rnorm(n = 1e6), ncol = 1e5)

#> Unit: milliseconds
#>          expr       min       lq     mean   median       uq      max neval
#>  split_1(dat) 204.69803 231.3023 261.6907 246.4927 289.5218 413.5386   100
#>  split_2(dat) 229.38132 235.3153 253.3027 242.0433 259.2280 339.0016   100
#>  split_3(dat) 208.29162 216.5506 234.2354 221.7152 235.3539 342.5918   100
#>  split_4(dat) 214.43064 221.9247 240.7921 231.0895 246.2457 323.3709   100
#>  split_5(dat)  89.83764 105.8272 127.1187 114.3563 143.8771 209.0670   100
nbenn
  • 591
  • 4
  • 12
3

There's a function array_tree() in the tidyverse's purrr package that does this with minimum fuss:

x <- matrix(1:10,ncol=2)
xlist <- purrr::array_tree(x, margin=2)
xlist

#> [[1]]
#> [1] 1 2 3 4 5
#>  
#> [[2]]
#> [1]  6  7  8  9 10

Use margin=1 to list by row instead. Works for n-dimensional arrays. It preserves names by default:

x <- matrix(1:10,ncol=2)
colnames(x) <- letters[1:2]
xlist <- purrr::array_tree(x, margin=2)
xlist

#> $a
#> [1] 1 2 3 4 5
#>
#> $b
#> [1]  6  7  8  9 10

(this is a near word-for-word copy of my answer to a similar question here)

wjchulme
  • 1,928
  • 1
  • 18
  • 28
2

You could use apply and then c with do.call

x <- matrix(1:10,ncol=2)
do.call(c, apply(x, 2, list))
#[[1]]
#[1] 1 2 3 4 5
#
#[[2]]
#[1]  6  7  8  9 10

And it looks like it will preserve the column names, when added to the matrix.

colnames(x) <- c("a", "b")
do.call(c, apply(x, 2, list))
#$a
#[1] 1 2 3 4 5
#
#$b
#[1]  6  7  8  9 10
Rich Scriven
  • 97,041
  • 11
  • 181
  • 245
2

convertRowsToList {BBmisc}

Convert rows (columns) of data.frame or matrix to lists.

BBmisc::convertColsToList(x)

ref: http://berndbischl.github.io/BBmisc/man/convertRowsToList.html

Zhilong Jia
  • 2,329
  • 1
  • 22
  • 34
2

Under Some R Help site accessible via nabble.com I find:

c(unname(as.data.frame(x))) 

as a valid solution and in my R v2.13.0 install this looks ok:

> y <- c(unname(as.data.frame(x)))
> y
[[1]]
[1] 1 2 3 4 5

[[2]]
[1]  6  7  8  9 10

Can't say anythng about performance comparisons or how clean it is ;-)

Dilettant
  • 3,267
  • 3
  • 29
  • 29
  • 2
    Interesting. I think this also works by coercion. `c(as.data.frame(x))` produces identical behavior to `as.list(as.data.frame(x)` – Ari B. Friedman Jul 25 '11 at 17:20
  • I think that this is so, because the members of the sample lists / matrix are of the same type, but I am not an expeRt. – Dilettant Jul 25 '11 at 17:29
1

In the trivial case where the number of columns is small and constant, then I've found that the fastest option is to simply hard-code the conversion:

mat2list  <- function (mat) lapply(1:2, function (i) mat[, i])
mat2list2 <- function (mat) list(mat[, 1], mat[, 2])


## Microbenchmark results; unit: microseconds
#          expr   min    lq    mean median    uq    max neval
##  mat2list(x) 7.464 7.932 8.77091  8.398 8.864 29.390   100
## mat2list2(x) 1.400 1.867 2.48702  2.333 2.333 27.525   100
Martin Smith
  • 3,687
  • 1
  • 24
  • 51
1

There is also collapse::mrtl (row lists) and collapse::mctl (column lists). collapse is considerably faster.

collapse::mrtl(x)
collapse::mctl(x)

Benchmark:

x <- matrix(1:2e4, ncol = 100)
microbenchmark::microbenchmark(
  asplit = asplit(x, MARGIN = 2),
  collapse = mctl(x),
  split = split(x, rep(1:ncol(x), each = nrow(x))),
  lapply = lapply(seq_len(ncol(x)), function(i) x[,i])
)

# Unit: microseconds
#      expr     min       lq       mean   median       uq       max neval
#    asplit 281.301 318.8005  376.88597 370.4515  421.051   659.300   100
#  collapse  20.600  25.3510   46.51694  31.3510   41.351   157.401   100
#     split 748.001 935.1515 1144.62000 991.4010 1061.601 14922.301   100
#    lapply 139.401 152.0005  205.74196 165.3005  236.901  1319.701   100
Maël
  • 45,206
  • 3
  • 29
  • 67
0

The simplest way to create a list that has the columns of a matrix mat as its elements is to use the fact that a data.frame object in R is internally represented as a list of the columns. Thus all that is needed is the following line

mat.list <- as.data.frame(mat)
0

A dplyr readable renewed approach for the same thing:

x <- matrix(1:10,ncol=2)
library(dplyr)
x %>% as_tibble() %>%
  as.list()

$V1
[1] 1 2 3 4 5

$V2
[1]  6  7  8  9 10
rubengavidia0x
  • 501
  • 1
  • 5
  • 18