There are plenty of great answers to this question already, but here is another solution to this problem for you to consider. This program differs from the others in that it is very efficient, and generates non-redundant solutions of lists which are assumed to represent sets of integers which add up to the specified number.
gen(N, L) :-
gen(N-1, N, N, FL),
dup_n(FL, L).
gen(C-F, M, M, [C-F]).
gen(C-F, S, M, [C-F|R]) :-
S < M, C > 1,
C0 is C - 1,
F0 is floor(M / C0),
S0 is S + (C0 * F0),
gen(C0-F0, S0, M, R).
gen(C-F, S, M, R) :-
F > 0,
F0 is F - 1,
S0 is S - C,
gen(C-F0, S0, M, R).
dup_n([], []).
dup_n([_-0|R], L) :-
!, dup_n(R, L).
dup_n([V-F|R], [V|L]) :-
F0 is F - 1,
dup_n([V-F0|R], L).
Your implementation of addUpList/2
can be achieved by:
addUpList(N, P) :-
findall(L, gen(N, L), P).
Which should give you the following behaviour:
?- addUpList(4,L).
L = [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]].
Note that the list containing one 2
and two 1
s only appears once in this result set; this is because gen/4
computes unique sets of integers which add up to the specified number.