Yes.
You can construct InferenceRequest and call exec() method to use another model in the model repository.
Here is code snippet:
inference_request = pb_utils.InferenceRequest(
model_name='model_name',
requested_output_names=['output0', 'output1'],
inputs=[pb_utils.Tensor('input0', input0.astype(np.float32))]
)
inference_response = inference_request.exec()
output0 = pb_utils.get_output_tensor_by_name(inference_response, 'output0')
output1 = pb_utils.get_output_tensor_by_name(inference_response, 'output1')
Here is a relatively complete example.
import numpy as np
import triton_python_backend_utils as pb_utils
import utils
class facenet(object):
def __init__(self):
self.Facenet_inputs = ['input_1']
self.Facenet_outputs = ['Bottleneck_BatchNorm']
def calc_128_vec(self, img):
face_img = utils.pre_process(img)
inference_request = pb_utils.InferenceRequest(
model_name='facenet',
requested_output_names=[self.Facenet_outputs[0]],
inputs=[pb_utils.Tensor(self.Facenet_inputs[0], face_img.astype(np.float32))]
)
inference_response = inference_request.exec()
pre = utils.pb_tensor_to_numpy(pb_utils.get_output_tensor_by_name(inference_response, self.Facenet_outputs[0]))
pre = utils.l2_normalize(np.concatenate(pre))
pre = np.reshape(pre, [128])
return pre
You can find more reference here: https://github.com/triton-inference-server/python_backend#business-logic-scripting-beta