I am trying to implement a camera into my code to move around a pyramid. Specifically, I need: WASD keys: These keys should be used to control the forward, backward, left, and right motion. QE keys: These keys should be used to control the upward and downward movement. Mouse cursor: This should be used to change the orientation of the camera so it can look up and down or right and left. Mouse scroll: This should be used to adjust the speed of the movement, or the speed the camera travels around the scene. My code for a pyramid is below. Can someone tell me what I need to add??? I am a beginner with openGL and C++. Anything will help!!
#include <iostream> // cout, cerr
#include <cstdlib> // EXIT_FAILURE
#include <GL/glew.h> // GLEW library
#include <GLFW/glfw3.h> // GLFW library
// GLM Math Header inclusions
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
#include <glm/gtc/type_ptr.hpp>
using namespace std; // Standard namespace
/*Shader program Macro*/
#ifndef GLSL
#define GLSL(Version, Source) "#version " #Version " core \n" #Source
#endif
// Unnamed namespace
namespace
{
const char* const WINDOW_TITLE = "Upside Down Pyramid!"; // title
// width and height
const int WINDOW_WIDTH = 800;
const int WINDOW_HEIGHT = 600;
// mesh data
struct GLMesh
{
GLuint vao; // vertex array object
GLuint vbos[2]; // vertex buffer objects
GLuint nIndices; // Number of indices
};
// Main GLFW window
GLFWwindow* gWindow = nullptr;
// Triangle mesh data
GLMesh gMesh;
// Shader program
GLuint gProgramId;
}
/* User-defined Function prototypes to:
* initialize the program, set the window size,
* redraw graphics on the window when resized,
* and render graphics on the screen
*/
bool UInitialize(int, char* [], GLFWwindow** window);
void UResizeWindow(GLFWwindow* window, int width, int height);
void UProcessInput(GLFWwindow* window);
void UCreateMesh(GLMesh& mesh);
void UDestroyMesh(GLMesh& mesh);
void URender();
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId);
void UDestroyShaderProgram(GLuint programId);
/* Vertex Shader Source Code*/
const GLchar* vertexShaderSource = GLSL(440,
layout(location = 0) in vec3 position; // Vertex data from Vertex Attrib Pointer 0
layout(location = 1) in vec4 color; // Color data from Vertex Attrib Pointer 1
out vec4 vertexColor;
// variables for the transform matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f); //coordinates
vertexColor = color;
}
);
const GLchar* fragmentShaderSource = GLSL(440,
in vec4 vertexColor;
out vec4 fragmentColor;
void main()
{
fragmentColor = vec4(vertexColor);
}
);
int main(int argc, char* argv[])
{
if (!UInitialize(argc, argv, &gWindow))
return EXIT_FAILURE;
// Create the mesh
UCreateMesh(gMesh);
// Create the shader program
if (!UCreateShaderProgram(vertexShaderSource, fragmentShaderSource, gProgramId))
return EXIT_FAILURE;
// Sets the background color
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
// render loop
// -----------
while (!glfwWindowShouldClose(gWindow))
{
// input
// -----
UProcessInput(gWindow);
URender();
glfwPollEvents();
}
// Release mesh data
UDestroyMesh(gMesh);
// Release shader program
UDestroyShaderProgram(gProgramId);
exit(EXIT_SUCCESS); //program successfull
}
// Initialize
bool UInitialize(int argc, char* argv[], GLFWwindow** window)
{
// GLFW: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 4);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// GLFW: window creation
// ---------------------
* window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, NULL, NULL);
if (*window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return false;
}
glfwMakeContextCurrent(*window);
glfwSetFramebufferSizeCallback(*window, UResizeWindow);
// GLEW: initialize
glewExperimental = GL_TRUE;
GLenum GlewInitResult = glewInit();
if (GLEW_OK != GlewInitResult)
{
std::cerr << glewGetErrorString(GlewInitResult) << std::endl;
return false;
}
cout << "INFO: OpenGL Version: " << glGetString(GL_VERSION) << endl;
return true;
}
// process all input
void UProcessInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
void UResizeWindow(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void URender()
{
// z-depth
glEnable(GL_DEPTH_TEST);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. Scales the object by 2
glm::mat4 scale = glm::scale(glm::vec3(2.0f, 2.0f, 2.0f));
// 2. Rotates shape by 360 degrees in the x axis
glm::mat4 rotation = glm::rotate(360.0f, glm::vec3(1.0, 1.0f, 1.0f));
// 3. Place object at the origin
glm::mat4 translation = glm::translate(glm::vec3(0.0f, 0.0f, 0.0f));
// Model matrix: transformations are applied right-to-left order
glm::mat4 model = translation * rotation * scale;
// Transforms the camera
glm::mat4 view = glm::translate(glm::vec3(0.0f, 0.0f, -5.0f));
// Creates a orthographic projection
glm::mat4 projection = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.1f, 100.0f);
// Set the shader to be used
glUseProgram(gProgramId);
// Retrieves and passes transform matrices
GLint modelLoc = glGetUniformLocation(gProgramId, "model");
GLint viewLoc = glGetUniformLocation(gProgramId, "view");
GLint projLoc = glGetUniformLocation(gProgramId, "projection");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// Activate the VBOs contained within the mesh's VAO
glBindVertexArray(gMesh.vao);
// Draws the triangles to create pyramid
glDrawElements(GL_TRIANGLES, gMesh.nIndices, GL_UNSIGNED_SHORT, NULL); // Draws the triangle
glBindVertexArray(0);
glfwSwapBuffers(gWindow); // Flips the the back buffer with the front buffer every frame.
}
// Implements the UCreateMesh
void UCreateMesh(GLMesh& mesh)
{
// color position
GLfloat verts[] = {
// Vertex Positions // Colors
-0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, // Top
0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, // Bottom
-0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, // Top
0.5f, -0.5f, 0.5f, 0.5f, 0.5f, 1.0f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.5f, 1.0f, // Bottom
-0.5f, -0.5f, -0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Top
-0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 0.5f, 0.5f, 1.0f, 1.0f, // Bottom
0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.5f, 1.0f, // Top
0.5f, -0.5f, 0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // Bottom
0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.5f, 1.0f, // Top
0.5f, -0.5f, 0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, // Bottom
-0.5f, -0.5f, 0.5f, 1.0f, 1.0f, 0.5f, 1.0f, // Top
-0.5f, -0.5f, -0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f // Bottom
};
// Index data to share position data
GLushort indices[] = {
2, 1, 0, // Triangle 1
3, 1, 0, // Triangle 2
};
const GLuint floatsPerVertex = 3;
const GLuint floatsPerColor = 4;
glGenVertexArrays(1, &mesh.vao);
glBindVertexArray(mesh.vao);
// Create 2 buffers
glGenBuffers(2, mesh.vbos);
glBindBuffer(GL_ARRAY_BUFFER, mesh.vbos[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
mesh.nIndices = sizeof(indices) / sizeof(indices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
GLint stride = sizeof(float) * (floatsPerVertex + floatsPerColor);
// Vertex Attribute Pointers
glVertexAttribPointer(0, floatsPerVertex, GL_FLOAT, GL_FALSE, stride, 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, floatsPerColor, GL_FLOAT, GL_FALSE, stride, (char*)(sizeof(float) * floatsPerVertex));
glEnableVertexAttribArray(1);
}
void UDestroyMesh(GLMesh& mesh)
{
glDeleteVertexArrays(1, &mesh.vao);
glDeleteBuffers(2, mesh.vbos);
}
//Shader function
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId)
{
// error report
int success = 0;
char infoLog[512];
programId = glCreateProgram();
// Create the vertex and fragment shader objects
GLuint vertexShaderId = glCreateShader(GL_VERTEX_SHADER);
GLuint fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
// Retrieve the shader source
glShaderSource(vertexShaderId, 1, &vtxShaderSource, NULL);
glShaderSource(fragmentShaderId, 1, &fragShaderSource, NULL);
// compile and check for errors)
glCompileShader(vertexShaderId);
glGetShaderiv(vertexShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(vertexShaderId, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
glCompileShader(fragmentShaderId);
glGetShaderiv(fragmentShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(fragmentShaderId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
// Compiled shaders
glAttachShader(programId, vertexShaderId);
glAttachShader(programId, fragmentShaderId);
glLinkProgram(programId);
glGetProgramiv(programId, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(programId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
return false;
}
glUseProgram(programId);
return true;
}
void UDestroyShaderProgram(GLuint programId)
{
glDeleteProgram(programId);
}