Absolute beginner here. I'm trying to use a neural network to predict price of a product that's being shipped while using temperature, deaths during a pandemic, rain volume, and a column of 0 and 1's (dummy variable).
So imagine that I have a dataset given those values as well as column giving me time in a year/week format.
I started reading Rob Hyndman's forecasting book but I haven't yet seen anything that can help me. One idea that I have is to make a variable that's going to take out each column of the dataframe and make it into a time series. For example, for rain, I can do something like
rain <- df$rain_inches cost<-mainset3 %>% select(approx_cost) raintimeseries <-ts(rain, frequency=52, start=c(2015,1), end=c(2021,5))
I would the same for the other regressors.
I want to use neural networks on each of the regressors to predict cost and then put them all together.
Ideally I'm thinking it would be a good idea to train on say, 3/4 ths of the time series data and test on the remain 1/4 and then possibly make predictions.
I'm now seeing that even if I am using one regressor I'm still left with a multivariate time series and I've only found examples online for univariate models.
I'd appreciate if someone could give me ideas on how to model my problem using neural networks
I saw this link Keras RNN with LSTM cells for predicting multiple output time series based on multiple intput time series but I just see a bunch of functions and nowhere where I can actually insert my function