0

I have data of S&P101 built in this way:

Symbol   Name    X2020.01.02 X2020.01.03 X2020.01.06 X2020.01.07 X2020.01.08 X2020.01.09 
1   AAPL  Apple     75.0875     74.3575       74.95     74.5975     75.7975     77.4075     
2   ABBV AbbVie     89.5500     88.7000       89.40     88.8900     89.5200     90.2100 

Now, I turned it into long format because I use mixed model:

#convert data to long format for mixed model 
  c_data    = ncol(data_2020)
  #convert the dates into numbers
  names(data_2020)[3:c_data]<- 1:(c_data-2)
  tempDataLong <- data_2020 %>% gather( key = day, value= close, 3:c_data, factor_key = TRUE )
  #convert data to numeric for analysis
  tempDataLong$day<- as.numeric(tempDataLong$day)

When I try to use the function as.date to transform the data into dates it does not accept it since it is now a factor, and when I make it numeric first and then change it to irrelevant dates (i.e. 1970)

please note that the dates are not continuous right now, because the stock market does not work three days a week, but for my analysis purposes I'm allowed to use them as such.

My question is- how do I turn the data in my long format back to the dates in the wide format?

Here is how my long format looks like right now:

Symbol                         Name      day   close
1     AAPL                        Apple   1   75.08750
2     ABBV                       AbbVie   1   89.55000
3      ABT          Abbott Laboratories   1   86.95000
4      ACN                    Accenture   1  210.14999
5     ADBE                        Adobe   1  334.42999
6      AIG American International Group   1   51.76000
7     AMGN                        Amgen   1  240.10001
8      AMT               American Tower   1  228.50000

1 Answers1

2

If you change the column names you'll loose the date information.

Try this with pivot_longer as gather has been superseded.

library(dplyr)
library(tidyr)

tempDataLong <- data_2020 %>%
  pivot_longer(cols = starts_with('X'), 
               names_to = 'day', 
               names_pattern = 'X(.*)') %>%
  mutate(day = lubridate::ymd(day))

tempDataLong

#   Symbol Name   day        value
#   <chr>  <chr>  <date>     <dbl>
# 1 AAPL   Apple  2020-01-02  75.1
# 2 AAPL   Apple  2020-01-03  74.4
# 3 AAPL   Apple  2020-01-06  75.0
# 4 AAPL   Apple  2020-01-07  74.6
# 5 AAPL   Apple  2020-01-08  75.8
# 6 AAPL   Apple  2020-01-09  77.4
# 7 ABBV   AbbVie 2020-01-02  89.6
# 8 ABBV   AbbVie 2020-01-03  88.7
# 9 ABBV   AbbVie 2020-01-06  89.4
#10 ABBV   AbbVie 2020-01-07  88.9
#11 ABBV   AbbVie 2020-01-08  89.5
#12 ABBV   AbbVie 2020-01-09  90.2

data

data_2020 <- structure(list(Symbol = c("AAPL", "ABBV"), Name = c("Apple", 
"AbbVie"), X2020.01.02 = c(75.0875, 89.55), X2020.01.03 = c(74.3575, 
88.7), X2020.01.06 = c(74.95, 89.4), X2020.01.07 = c(74.5975, 
88.89), X2020.01.08 = c(75.7975, 89.52), X2020.01.09 = c(77.4075, 
90.21)), class = "data.frame", row.names = c("1", "2"))
Ronak Shah
  • 377,200
  • 20
  • 156
  • 213