I'm testing and performing simple FFT's and I'm interested in phase shift.
I geneate simple array of 256 samples with sinusoid with 10 cycles.
I perform an FFT of those samples and receiving complex data (2x128).
Than I calculate magnitude of those data and FFT looks like expected:
Then I want to calculate phase shift from fft complex output. I'm using atan2.
Combined output fft_magnitude (blue) + fft+phase (red) looks like this:
This is pretty much what I expect with a "small" problem. I know this is wrapping but if I imagine unwrapping it, the phase shift in the magnitude peak is reading 36 degrees and I think it should be 0 because my input sinusiod was not shifted at all.
If I shift this -36 deg (blue is in-phase, red is shifted, blue is printed only for reference) the sinusiod looks like this:
And than if I perform an FFT of this red data the magnitude + phase output looks like this:
So it is easy to imagine that unwrapped phase will be close to 0 at the magniture peak.
So there is 36 deg offset. But what happenes if I prepare data with 20 cycles per 256 samples and 0 phase shift
If I then perform an FFT, this is an output (magnitude + phase):
And I can tell you if will cross the peak point at 72 degrees. So there is now 72 degrees offset.
Can anyone give me a hint why is that happening? Is it right that atan2() phase output is frequency dependent with offset of 2pi/cycles (360 deg/cycles) ? How to unwrap it and get correct results (I couldn't find working C library to unwrap).
This is running on ARM Cortex-M7 processor (embedded).
#define phaseShift 0
#define cycles 20
#include <arm_math.h>
#include <arm_const_structs.h>
float32_t phi = phaseShift * PI / 180; //phase shift in radians
float32_t data[256]; //input data for fft
float32_t output_buffer[256]; //output buffer from fft
float32_t phase_data[128]; //will contain atan2 values of output from fft (output values are complex)
float32_t magnitude[128]; //will contain absolute values of output from fft (output values are complex)
float32_t incrFactorRadians = cycles * 2 * PI / 255;
arm_rfft_fast_instance_f32 RealFFT_Instance;
void setup()
{
Serial.begin(115200);
delay(2000);
arm_rfft_fast_init_f32(&RealFFT_Instance, 256); //initializing fft to be ready for 256 samples
for (int i = 0; i < 256; i++) //print sinusoids
{
data[i] = arm_sin_f32(incrFactorRadians * i + phi);
Serial.print(arm_sin_f32(incrFactorRadians * i), 8); Serial.print(","); Serial.print(data[i], 8); Serial.print("\n"); //print reference in-phase sinusoid and shifted sinusoid (data for fft)
}
Serial.print("\n\n");
delay(10000);
arm_rfft_fast_f32(&RealFFT_Instance, data, output_buffer, 0); //perform fft
for (int i = 0; i < 128; i++) //calculate absolute values of an fft output (fft output is complex), and phase shift
{
magnitude[i] = output_buffer[i * 2] * output_buffer[i * 2] + output_buffer[(i * 2) + 1] * output_buffer[(i * 2) + 1];
__ASM("VSQRT.F32 %0,%1" : "=t"(magnitude[i]) : "t"(magnitude[i])); //fast square root ARM DSP function
phase_data[i] = atan2(output_buffer[i * 2], output_buffer[i * 2 +1]) * 180 / PI;
}
}
void loop() //print magnitude of fft and phase output every 10 seconds
{
for (int i = 0; i < 128; i++)
{
Serial.print(magnitude[i], 8); Serial.print(","); Serial.print(phase_data[i], 8); Serial.print("\n");
}
Serial.print("\n\n");
delay(10000);
}