There doesn't appear to be any easy way to do this within datafusion after opening the CSV file. But you could instead open the CSV file directly with arrow, produce a new RecordBatch that incorporates the index column, and then feed this to datafusion using a MemTable. Here's the example assuming we are only processing one batch ...
use datafusion::prelude::*;
use datafusion::datasource::MemTable;
use arrow::util::pretty::print_batches;
use arrow::record_batch::RecordBatch;
use arrow::array::{UInt32Array, Int64Array};
use arrow::datatypes::{Schema, Field, DataType};
use arrow::csv;
use std::fs::File;
use std::sync::Arc;
#[tokio::main]
async fn main() -> datafusion::error::Result<()> {
let schema = Schema::new(vec![
Field::new("a", DataType::Int64, false),
Field::new("b", DataType::Int64, false),
]);
let file = File::open("tests/example.csv")?;
let mut csv = csv::Reader::new(file, Arc::new(schema), true, None, 1024, None, None);
let batch = csv.next().unwrap()?;
let length = batch.num_rows() as u32;
let idx_array = UInt32Array::from((0..length).collect::<Vec<u32>>());
let a_array = Int64Array::from(batch.column(0).as_any().downcast_ref::<Int64Array>().unwrap().values().to_vec());
let b_array = Int64Array::from(batch.column(1).as_any().downcast_ref::<Int64Array>().unwrap().values().to_vec());
let new_schema = Schema::new(vec![
Field::new("idx", DataType::UInt32, true),
Field::new("a", DataType::Int64, false),
Field::new("b", DataType::Int64, false),
]);
let new_batch = RecordBatch::try_new(Arc::new(new_schema),
vec![Arc::new(idx_array), Arc::new(a_array), Arc::new(b_array)])?;
let mem_table = MemTable::try_new(new_batch.schema(), vec![vec![new_batch]])?;
let mut ctx = ExecutionContext::new();
// create the dataframe
let df = ctx.read_table(Arc::new(mem_table))?;
let results = df.collect().await?;
print_batches(&results).unwrap();
// do whatever you need to do
// do whatever you need to do
// do whatever you need to do
Ok(())
}
My example.csv looks like this ...
a,b
1,2
1,3
4,2
2,6
3,7
And the output should be ...
+-----+---+---+
| idx | a | b |
+-----+---+---+
| 0 | 1 | 2 |
| 1 | 1 | 3 |
| 2 | 4 | 2 |
| 3 | 2 | 6 |
| 4 | 3 | 7 |
+-----+---+---+
Though if you're really just in search of a crate with functionality like pandas in python, I'd urge you to checkout polars.