I don't know much about multi-threading and I have no idea why this is happening so I'll just get to the point.
I'm processing an image and divide the image in 4 parts and pass each part to each thread(essentially I pass the indices of the first and last pixel rows of each part). For example, if the image has 1000 rows, each thread will process 250 of them. I can go in details about my implementation and what I'm trying to achieve in case it can help you. For now I provide the code executed by the threads in case you can detect why this is happening. I don't know if it's relevant but in both cases(1 thread or 4 threads) the process takes around 15ms and pfUMap
and pbUMap
are unordered maps.
void jacobiansThread(int start, int end,vector<float> &sJT,vector<float> &sJTJ) {
uchar* rgbPointer;
float* depthPointer;
float* sdfPointer;
float* dfdxPointer; float* dfdyPointer;
float fov = radians(45.0);
float aspect = 4.0 / 3.0;
float focal = 1 / (glm::tan(fov / 2));
float fu = focal * cols / 2 / aspect;
float fv = focal * rows / 2;
float strictFu = focal / aspect;
float strictFv = focal;
vector<float> pixelJacobi(6, 0);
for (int y = start; y <end; y++) {
rgbPointer = sceneImage.ptr<uchar>(y);
depthPointer = depthBuffer.ptr<float>(y);
dfdxPointer = dfdx.ptr<float>(y);
dfdyPointer = dfdy.ptr<float>(y);
sdfPointer = sdf.ptr<float>(y);
for (int x = roiX.x; x <roiX.y; x++) {
float deltaTerm;// = deltaPointer[x];
float raw = sdfPointer[x];
if (raw > 8.0)continue;
float dirac = (1.0f / float(CV_PI)) * (1.2f / (raw * 1.44f * raw + 1.0f));
deltaTerm = dirac;
vec3 rgb(rgbPointer[x * 3], rgbPointer[x * 3+1], rgbPointer[x * 3+2]);
vec3 bin = rgbToBin(rgb, numberOfBins);
int indexOfColor = bin.x * numberOfBins * numberOfBins + bin.y * numberOfBins + bin.z;
float s3 = glfwGetTime();
float pF = pfUMap[indexOfColor];
float pB = pbUMap[indexOfColor];
float heavisideTerm;
heavisideTerm = HEAVISIDE(raw);
float denominator = (heavisideTerm * pF + (1 - heavisideTerm) * pB) + 0.000001;
float commonFirstTerm = -(pF - pB) / denominator * deltaTerm;
if (pF == pB)continue;
vec3 pixel(x, y, depthPointer[x]);
float dfdxTerm = dfdxPointer[x];
float dfdyTerm = -dfdyPointer[x];
if (pixel.z == 1) {
cv::Point c = findClosestContourPoint(cv::Point(x, y), dfdxTerm, -dfdyTerm, abs(raw));
if (c.x == -1)continue;
pixel = vec3(c.x, c.y, depthBuffer.at<float>(cv::Point(c.x, c.y)));
}
vec3 point3D = pixel;
pixelToViewFast(point3D, cols, rows, strictFu, strictFv);
float Xc = point3D.x; float Xc2 = Xc * Xc; float Yc = point3D.y; float Yc2 = Yc * Yc; float Zc = point3D.z; float Zc2 = Zc * Zc;
pixelJacobi[0] = dfdyTerm * ((fv * Yc2) / Zc2 + fv) + (dfdxTerm * fu * Xc * Yc) / Zc2;
pixelJacobi[1] = -dfdxTerm * ((fu * Xc2) / Zc2 + fu) - (dfdyTerm * fv * Xc * Yc) / Zc2;
pixelJacobi[2] = -(dfdyTerm * fv * Xc) / Zc + (dfdxTerm * fu * Yc) / Zc;
pixelJacobi[3] = -(dfdxTerm * fu) / Zc;
pixelJacobi[4] = -(dfdyTerm * fv) / Zc;
pixelJacobi[5] = (dfdyTerm * fv * Yc) / Zc2 + (dfdxTerm * fu * Xc) / Zc2;
float weightingTerm = -1.0 / log(denominator);
for (int i = 0; i < 6; i++) {
pixelJacobi[i] *= commonFirstTerm;
sJT[i] += pixelJacobi[i];
}
for (int i = 0; i < 6; i++) {
for (int j = i; j < 6; j++) {
sJTJ[i * 6 + j] += weightingTerm * pixelJacobi[i] * pixelJacobi[j];
}
}
}
}
}
This is the part where I call each thread:
vector<std::thread> myThreads;
float step = (roiY.y - roiY.x) / numberOfThreads;
vector<vector<float>> tsJT(numberOfThreads, vector<float>(6, 0));
vector<vector<float>> tsJTJ(numberOfThreads, vector<float>(36, 0));
for (int i = 0; i < numberOfThreads; i++) {
int start = roiY.x+i * step;
int end = start + step;
if (end > roiY.y)end = roiY.y;
myThreads.push_back(std::thread(&pwp3dV2::jacobiansThread, this,start,end,std::ref(tsJT[i]), std::ref(tsJTJ[i])));
}
vector<float> sJT(6, 0);
vector<float> sJTJ(36, 0);
for (int i = 0; i < numberOfThreads; i++)myThreads[i].join();
Other Notes
To measure time I used glfwGetTime() before and right after the second code snippet. The measurements vary but the average is about 15ms as I mentioned, for both implementations.