I normalized the numeric variables by library(recipes) in R before putting into Decision Tree models to predict outcome. Now, I have decision tree, and age is one of important variables in the node, like >1.5 and < 1.5. I want to convert that -1.5 back into a non-normalized value to be able to give it a practical meaning (like age >50 or </= 50 years old). I have searched and cannot find the answer.
library(recipes)
recipe_obj <- dataset %>%
recipe(formula = anyaki ~.) %>% #specify formula
step_center(all_numeric()) %>% #center data (0 mean)
step_scale(all_numeric()) %>% #std = 1
prep(data = dataset)
dataset_scaled <- bake(recipe_obj, new_data = dataset)
Age is one of variables that have been normalized in recipes package in R. Now, I am struggling to convert the normalized data that I have in the final model back to into a non-normalized value to be able to give it a practical meaning. How can I do this?