Does anyone see what is going wrong in the below code, as the code below works well when encrypting and sending to the server (which means my encryption function is fine), however there seems some problem with my decryption logic which is not decrypting the information correctly.
Note: The server side enc/dec logic works well with other languages e.g. Java
Server-side implementation sample: Nodejs Crypto to Swift commonCrypto
MyEncDec.swift
import Foundation
import CommonCrypto
struct AES256 {
private var key: Data
private var iv: Data
public init(key: Data, iv: Data) throws {
guard key.count == kCCKeySizeAES256 else {
throw Error.badKeyLength
}
guard iv.count == kCCBlockSizeAES128 else {
throw Error.badInputVectorLength
}
self.key = key
self.iv = iv
}
enum Error: Swift.Error {
case keyGeneration(status: Int)
case cryptoFailed(status: CCCryptorStatus)
case badKeyLength
case badInputVectorLength
}
func encrypt(_ digest: Data) throws -> Data {
return try crypt(input: digest, operation: CCOperation(kCCEncrypt))
}
func decrypt(_ encrypted: Data) throws -> Data {
return try crypt(input: encrypted, operation: CCOperation(kCCDecrypt))
}
private func crypt(input: Data, operation: CCOperation) throws -> Data {
var outLength = Int(0)
var outBytes = [UInt8](repeating: 0, count: input.count + kCCBlockSizeAES128)
var status: CCCryptorStatus = CCCryptorStatus(kCCSuccess)
input.withUnsafeBytes { rawBufferPointer in
let encryptedBytes = rawBufferPointer.baseAddress!
iv.withUnsafeBytes { rawBufferPointer in
let ivBytes = rawBufferPointer.baseAddress!
key.withUnsafeBytes { rawBufferPointer in
let keyBytes = rawBufferPointer.baseAddress!
status = CCCrypt(operation,
CCAlgorithm(kCCAlgorithmAES128), // algorithm
CCOptions(kCCOptionPKCS7Padding), // options
keyBytes, // key
key.count, // keylength
ivBytes, // iv
encryptedBytes, // dataIn
input.count, // dataInLength
&outBytes, // dataOut
outBytes.count, // dataOutAvailable
&outLength) // dataOutMoved
}
}
}
guard status == kCCSuccess else {
throw Error.cryptoFailed(status: status)
}
return Data(bytes: &outBytes, count: outLength)
}
static func createKey(password: Data, salt: Data) throws -> Data {
let length = kCCKeySizeAES256
var status = Int32(0)
var derivedBytes = [UInt8](repeating: 0, count: length)
password.withUnsafeBytes { rawBufferPointer in
let passwordRawBytes = rawBufferPointer.baseAddress!
let passwordBytes = passwordRawBytes.assumingMemoryBound(to: Int8.self)
salt.withUnsafeBytes { rawBufferPointer in
let saltRawBytes = rawBufferPointer.baseAddress!
let saltBytes = saltRawBytes.assumingMemoryBound(to: UInt8.self)
status = CCKeyDerivationPBKDF(CCPBKDFAlgorithm(kCCPBKDF2), // algorithm
passwordBytes, // password
password.count, // passwordLen
saltBytes, // salt
salt.count, // saltLen
CCPseudoRandomAlgorithm(kCCPRFHmacAlgSHA1), // prf
10000, // rounds
&derivedBytes, // derivedKey
length) // derivedKeyLen
}
}
guard status == 0 else {
throw Error.keyGeneration(status: Int(status))
}
return Data(bytes: &derivedBytes, count: length)
}
static func randomIv() -> Data {
return randomData(length: kCCBlockSizeAES128)
}
static func iV() -> Data {
let arr: [UInt8] = [0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1]
return Data(arr)
}
static func randomSalt() -> Data {
return randomData(length: 8)
}
static func randomData(length: Int) -> Data {
var data = Data(count: length)
var mutableBytes: UnsafeMutableRawPointer!
data.withUnsafeMutableBytes { rawBufferPointer in
mutableBytes = rawBufferPointer.baseAddress!
}
let status = SecRandomCopyBytes(kSecRandomDefault, length, mutableBytes)
assert(status == Int32(0))
return data
}
}