Recently, I've decided to write a class storing a variant with reference_wrapper<const vector> and vector for having a choice either to own the value or having only a reference of it. That is, std::variant<vector<string>, reference_wrapper<const vector<string>>>
.
The interesting part is what the variant stores depending on initialization.
I did a small investigation, and it turned out, that in all cases vector<string>
type wins, except for the case when passing via std::cref. The same applies to functions (somewhat expected, because constructors are similar to functions in this way)
void f(vector<string>); // #1
void f(reference_wrapper<const vector<string>>); // #2
vector<string> data;
const vector<string>& get_data();
f(data); // #1
f(std::cref(data)) // #2
f(get_data()); // #1
f(std::cref(get_data())) // #2
The question is why the vector<string>
has the priority here. I looked at Best viable function section here , but it didn't make much sense. It seems, that
4) or, if not that, F1 is a non-template function while F2 is a template specialization
part chooses vector<string>
over reference_wrapper<vector<string>>
(because reference_wrapper
constructor is templated), but I'm not sure, because I can't fully understand if they are equal using the rule
1) There is at least one argument of F1 whose implicit conversion is better than the corresponding implicit conversion for that argument of F2
Can someone please describe all the implicit conversions applied in each case and show the true reason why one overload is preferred over another? To me, they are as follows:
f(data) = f(vector<string>&) -> (*exact match* implicit conversion) -> f(vector<string>)
f(data) = f(vector<string>&) -> (*conversion* implicit conversion) -> f(reference_wrapper<vector<string>>)
Did I miss something?
Another question, connected to this topic: Ranking of implicit conversion sequences section again,here leaves a question, is T(const T&)
considered an Exact match (user-defined conversion of class type to the same class) or Conversion?