First of all, I remind you that a number in the form bn...b2b1b0 in binary has value:
number = bn*2^n+...+b2*4+b1*2+b0
Now, when you say number%3, you have:
number%3 =3= bn*(2^n % 3)+...+b2*1+b1*2+b0
(I used =3= to indicate congruence modulo 3). Note also that b1*2 =3= -b1*1
Now I will write all the 16 divisions using + and - and possibly multiplication (note that multiplication could be written as shift or sum of same value shifted to different locations. For example 5*x
means x+(x<<2)
in which you compute x
once only)
Let's call the number n
and let's say Divisible_by_i
is a boolean value. As an intermediate value, imagine Congruence_by_i
is a value congruent to n
modulo i
.
Also, lets say n0
means bit zero of n, n1
means bit 1 etc, that is
ni = (n >> i) & 1;
Congruence_by_1 = 0
Congruence_by_2 = n&0x1
Congruence_by_3 = n0-n1+n2-n3+n4-n5+n6-n7+n8-n9+n10-n11+n12-n13+n14-n15+n16-n17+n18-n19+n20-n21+n22-n23+n24-n25+n26-n27+n28-n29+n30-n31
Congruence_by_4 = n&0x3
Congruence_by_5 = n0+2*n1-n2-2*n3+n4+2*n5-n6-2*n7+n8+2*n9-n10-2*n11+n12+2*n13-n14-2*n15+n16+2*n17-n18-2*n19+n20+2*n21-n22-2*n23+n24+2*n25-n26-2*n27+n28+2*n29-n30-2*n31
Congruence_by_7 = n0+2*n1+4*n2+n3+2*n4+4*n5+n6+2*n7+4*n8+n9+2*n10+4*n11+n12+2*n13+4*n14+n15+2*n16+4*n17+n18+2*n19+4*n20+n21+2*n22+4*n23+n24+2*n25+4*n26+n27+2*n28+4*n29+n30+2*n31
Congruence_by_8 = n&0x7
Congruence_by_9 = n0+2*n1+4*n2-n3-2*n4-4*n5+n6+2*n7+4*n8-n9-2*n10-4*n11+n12+2*n13+4*n14-n15-2*n16-4*n17+n18+2*n19+4*n20-n21-2*n22-4*n23+n24+2*n25+4*n26-n27-2*n28-4*n29+n30+2*n31
Congruence_by_11 = n0+2*n1+4*n2+8*n3+5*n4-n5-2*n6-4*n7-8*n8-5*n9+n10+2*n11+4*n12+8*n13+5*n14-n15-2*n16-4*n17-8*n18-5*n19+n20+2*n21+4*n22+8*n23+5*n24-n25-2*n26-4*n27-8*n28-5*n29+n30+2*n31
Congruence_by_13 = n0+2*n1+4*n2+8*n3+3*n4+6*n5-n6-2*n7-4*n8-8*n9-3*n10-6*n11+n12+2*n13+4*n14+8*n15+3*n16+6*n17-n18-2*n19-4*n20-8*n21-3*n22-6*n3+n24+2*n25+4*n26+8*n27+3*n28+6*n29-n30-2*n31
Congruence_by_16 = n&0xF
Or when factorized:
Congruence_by_1 = 0
Congruence_by_2 = n&0x1
Congruence_by_3 = (n0+n2+n4+n6+n8+n10+n12+n14+n16+n18+n20+n22+n24+n26+n28+n30)-(n1+n3+n5+n7+n9+n11+n13+n15+n17+n19+n21+n23+n25+n27+n29+n31)
Congruence_by_4 = n&0x3
Congruence_by_5 = n0+n4+n8+n12+n16+n20+n24+n28-(n2+n6+n10+n14+n18+n22+n26+n30)+2*(n1+n5+n9+n13+n17+n21+n25+n29-(n3+n7+n11+n15+n19+n23+n27+n31))
Congruence_by_7 = n0+n3+n6+n9+n12+n15+n18+n21+n24+n27+n30+2*(n1+n4+n7+n10+n13+n16+n19+n22+n25+n28+n31)+4*(n2+n5+n8+n11+n14+n17+n20+n23+n26+n29)
Congruence_by_8 = n&0x7
Congruence_by_9 = n0+n6+n12+n18+n24+n30-(n3+n9+n15+n21+n27)+2*(n1+n7+n13+n19+n25+n31-(n4+n10+n16+n22+n28))+4*(n2+n8+n14+n20+n26-(n5+n11+n17+n23+n29))
// and so on
If these values end up being negative, add it with i
until they become positive.
Now what you should do is recursively feed these values through the same process we just did until Congruence_by_i
becomes less than i
(and obviously >= 0
). This is similar to what we do when we want to find remainder of a number by 3 or 9, remember? Sum up the digits, if it had more than one digit, some up the digits of the result again until you get only one digit.
Now for i = 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16
:
Divisible_by_i = (Congruence_by_i == 0);
And for the rest:
Divisible_by_6 = Divisible_by_3 && Divisible_by_2;
Divisible_by_10 = Divisible_by_5 && Divisible_by_2;
Divisible_by_12 = Divisible_by_4 && Divisible_by_3;
Divisible_by_14 = Divisible_by_7 && Divisible_by_2;
Divisible_by_15 = Divisible_by_5 && Divisible_by_3;
Edit: Note that some of the additions could be avoided from the very beginning. For example n0+2*n1+4*n2
is the same as n&0x7
, similarly n3+2*n4+4*n5
is (n>>3)&0x7
and thus with each formula, you don't have to get each bit individually, I wrote it like that for the sake of clarity and similarity in operation. To optimize each of the formulas, you should work on it yourself; group operands and factorize operation.