I have to run my code that takes about 3 hours to complete 100 times, which amounts to a total computation time of 300 hours. This code is expensive and includes taking Laplacians, contour points, and outputting plots. I also have access to a computing cluster, which grants me access to 100 cores at once. So I wondered if I could run my 100 jobs on 100 individual cores at once --- no communication between cores --- and reduce the total computation time to somewhere around 3 hours still.
My online reading took me to multiprocessing.Pool
, where I ended up using Pool.apply_async()
. Quickly, I realized that the average completion time per task was way over 3 hours, the completion time of one task prior to parallelizing. Further research revealed it might be an overhead issue one has to deal with when parallelizing, but I don't think that can account for an 8-fold increase in computation time.
I was able to reproduce the issue on a simple, and shareable piece of code:
import numpy as np
import matplotlib.pyplot as plt
from multiprocessing import Pool
import time
def f(x):
'''Junk to just waste computing power!'''
arr = np.ones(shape=(10000,10000))*x
val1 = arr*arr
val2 = np.sqrt(val1)
val3 = np.roll(arr,-1) - np.roll(arr,1)
plt.subplot(121)
plt.imshow(arr)
plt.subplot(122)
plt.imshow(val3)
plt.savefig('f.png')
plt.close()
print('Done')
N = 1
pool = Pool(processes=N)
t0 = time.time()
for i in range(N):
pool.apply_async(f,[i])
pool.close()
pool.join()
print('Time taken = ', time.time()-t0)
The machine I'm on has 8 cores, and if I've understood my online reading correctly, setting N=1
should force Python to run the job exclusively on one core. Looking at the completion times, I get:
N=1 || Time taken = 7.964005947113037
N=7 || Time taken = 40.3266499042511
.
Put simply, I don't understand why the times aren't the same. As for my original code, the time difference between single-task and parallelized-task is about 8-fold.
[Question 1] Is this all a case of overhead (whatever it entails!)?
[Question 2] Is it at all possible to achieve a case where I can get the same computation time as that of a single-task for an N-task job running independently on N
cores?
For instance, in SLURM you could do sbatch --array=0-N myCode.slurm
, where myCode.slurm
would be a single-task Python code, and this would do exactly what I want. But, I need to achieve this same outcome from within Python itself.
Thank you in advance for your help and input!